Hausdorff dimension of Besicovitch sets of Cantor graphs

被引:0
|
作者
Altaf, Iqra [1 ]
Csoernyei, Marianna [1 ]
Hera, Kornelia [2 ,3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL USA
[2] Univ Bonn, Math Inst, Bonn, Germany
[3] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
D O I
10.1112/mtk.12241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hausdorff dimension of planar Besicovitch sets for rectifiable sets Gamma, that is, sets that contain a rotated copy of Gamma in each direction. We show that for a large class of Cantor sets C and Cantor-graphs Gamma built on C, the Hausdorff dimension of any Gamma-Besicovitch set must be at least min(2-s2,1s)$\min (2-s<^>2,\frac{1}{s})$, where s=dimC$s={\rm dim}\, C$.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] EXACT HAUSDORFF MEASURES OF CANTOR SETS
    Palo, Malin
    REAL ANALYSIS EXCHANGE, 2013, 39 (02) : 367 - 384
  • [32] A REMARK ON SELF-SIMILAR SUBSETS OF UNIFORM CANTOR SETS WITH SMALL HAUSDORFF DIMENSION
    Rao, Hui
    Wen, Zie-Ying
    Zeng, Ying
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (04)
  • [33] Dimension functions of cantor sets
    Garcia, Ignacio
    Molter, Ursula
    Scotto, Roberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3151 - 3161
  • [34] ON THE HAUSDORFF DIMENSION FAITHFULNESS AND THE CANTOR SERIES EXPANSION
    Albeverio, S.
    Ivanenko, Ganna
    Lebid, Mykola
    Torbin, Grygoriy
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (04): : 298 - 310
  • [35] Hausdorff measures for a class of homogeneous cantor sets
    Cheng-qin Qu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 117 - 122
  • [36] THE HAUSDORFF CENTRED MEASURE OF THE SYMMETRY CANTOR SETS
    Zhu Zhiwei and Zhou Zuoling (Zhongshan Univeristy
    ApproximationTheoryandItsApplications, 2002, (02) : 49 - 57
  • [37] An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension
    I. Laba
    T. Tao
    Geometric & Functional Analysis GAFA, 2001, 11 : 773 - 806
  • [38] An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension
    Laba, I
    Tao, T
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) : 773 - 806
  • [39] Hausdorff measures for a class of homogeneous cantor sets
    Qu, Cheng-qin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (01): : 117 - 122
  • [40] Hausdorff dimension of Gauss-Cantor sets and two applications to classical Lagrange and Markov spectra
    Matheus, Carlos
    Moreira, Carlos Gustavo
    Pollicott, Mark
    Vytnova, Polina
    ADVANCES IN MATHEMATICS, 2022, 409