Enhancing seismic resolution based on U-Net deep learning network

被引:0
|
作者
Li, Zeyu [1 ,2 ]
Wang, Guoquan [1 ,2 ]
Zhu, Chenghong [2 ,3 ,4 ]
Chen, Shuangquan [1 ]
机构
[1] China Univ Petr, Coll Geophys, Beijing 102249, Peoples R China
[2] State Key Lab Shale Oil & Gas Enrichment Mech & Ef, Beijing 100083, Peoples R China
[3] Sinopec Key Lab Seism Elast Wave Technol, Beijing 100083, Peoples R China
[4] Sinopec Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
来源
JOURNAL OF SEISMIC EXPLORATION | 2023年 / 32卷 / 04期
基金
中国国家自然科学基金;
关键词
U-net; deep learning; pre-training strategy; seismic resolution; data-driven;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep and ultra-deep reservoirs, unconventional hydrocarbons, and other complex reservoirs are being developed for oil and gas exploration, high-resolution seismic data with a high signal-to-noise ratio is required for accurate reservoir description. The traditional high-resolution processing techniques, such as the inverse Q-filtering technique based on the stratum attenuation model and the convolution model-based technique, are entirely model-dependent. In this study, we built a deep learning network based on the U-net and suggested a processing technique to boost seismic data resolution. We incorporated ResPath structure into the network and employ a weighted MAE and MS-SSIM combination as the loss function, and added a training strategy to the data processing workflow. Finally, the network is validated using both field data, our suggested network can further minimize the loss of low-frequency components during conventional deep learning high-resolution processing, effectively enhancing the ability to perceive low-frequency seismic data components, the signal-to-noise ratio and resolution of seismic data have both been significantly enhanced.
引用
收藏
页码:315 / 336
页数:22
相关论文
共 50 条
  • [41] Automatic and Accurate Determination of Defect Size in Shearography Using U-Net Deep Learning Network
    Wu, Rong
    Wei, Haibo
    Lu, Chao
    Liu, Yuan
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2025, 44 (01)
  • [42] A deep convolutional neural network based on U-Net to predict annual luminance maps
    Qorbani, Mohammad Ali
    Dalirani, Farhad
    Rahmati, Mohammad
    Hafezi, Mohammad Reza
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2022, 15 (01) : 62 - 80
  • [43] Image Recognition of Co-seismic Landslide based on GEE and U-net Neural Network
    Liu J.
    Wu Y.
    Gao X.
    Si W.
    Journal of Geo-Information Science, 2022, 24 (07) : 1275 - 1285
  • [44] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Faguo Zhou
    Yuansheng Ye
    Yanan Song
    Journal of Signal Processing Systems, 2022, 94 : 1145 - 1157
  • [45] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Zhou, Faguo
    Ye, Yuansheng
    Song, Yanan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (11): : 1145 - 1157
  • [46] Stone segmentation based on improved U-Net network
    Chen, Ning
    Ma, Xinkai
    Luo, Haixia
    Peng, Jun
    Jin, Shangzhu
    Wu, Xiao
    Zhou, Yongsheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 895 - 908
  • [47] BUILDINGS EXTRACTION FROM REMOTE SENSING DATA USING DEEP LEARNING METHOD BASED ON IMPROVED U-NET NETWORK
    Duan, Yiru
    Sun, Lin
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3959 - 3961
  • [48] Pore characterization was achieved based on the improved U-net deep learning network model and scanning electron microscope images
    Chen, Xiangru
    Tang, Xin
    Xiong, Junjie
    He, Ruiyu
    Wang, Biao
    PETROLEUM SCIENCE AND TECHNOLOGY, 2025, 43 (07) : 715 - 729
  • [49] Surface Defect Detection Using Deep U-Net Network Architectures
    Uzen, Huseyin
    Turkoglu, Muammer
    Hanbay, Davut
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [50] A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images
    Chen, Tao
    Lu, Zhiyuan
    Yang, Yue
    Zhang, Yuxiang
    Du, Bo
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2357 - 2369