On the Genus of Strong Annihilating-ideal Graph of Commutative Rings

被引:0
|
作者
Nazim, Mohd [1 ]
Rehman, Nadeem Ur [1 ]
Selvakumar, K. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli, Tamil Nadu, India
关键词
Zero-divisor graph; annihilating-ideal graph; strong annihilating-ideal graph; planar graph; genus of a graph; ZERO-DIVISOR GRAPH;
D O I
10.1142/S1793557123501668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity and A(R) be the set of annihilating-ideals of R. The strong annihilating-ideal graph of R, denoted by SAG(R), is an undirected graph with vertex set A(R)* and two vertices I-1 and I-2 are adjacent if and only if I-1 boolean AND Ann(I-2) not equal (0) and I-2 boolean AND Ann(I-1) not equal (0). In this paper, first we characterize commutative Artinian rings whose strong annihilating-ideal graph is isomorphic to some well-known graphs and then we classify commutative Artinian rings whose strong annihilating-ideal graph is planar, toroidal or projective.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] The Co-annihilating-ideal Graphs of Commutative Rings
    Akbari, Saeeid
    Alilou, Abbas
    Amjadi, Jafar
    Sheikholeslami, Eyed Mahmoud
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 3 - 11
  • [42] On metric dimension and crosscap analysis of sum-annihilating essential ideal graph of commutative rings
    Rehman, Nadeem ur
    Mir, Shabir Ahmad
    Nazim, Mohd
    Nazim, Nazim
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2025, 19 (01):
  • [43] Computing the (forcing) strong metric dimension in strongly annihilating-ideal graphs
    Pazoki, M.
    Nikandish, R.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2025, 36 (02) : 273 - 283
  • [44] ON THE STRUCTURE OF A k-ANNIHILATING IDEAL HYPERGRAPH OF COMMUTATIVE RINGS
    Essa, Shaymaa S.
    Mohammad, Husam Q.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (01): : 55 - 67
  • [45] Some Results on Annihilating-ideal Graphs
    Shaveisi, Farzad
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 641 - 651
  • [46] ON WEAKLY PERFECT ANNIHILATING-IDEAL GRAPHS
    Kadu, Ganesh S.
    Joshi, Vinayak
    Gonde, Samruddha
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (03) : 362 - 372
  • [47] ON RINGS WHOSE ANNIHILATING-IDEAL GRAPHS ARE BLOW-UPS OF A CLASS OF BOOLEAN GRAPHS
    Guo, Jin
    Wu, Tongsuo
    Yu, Houyi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 847 - 865
  • [48] On Eulerianity and Hamiltonicity in Annihilating-ideal Graphs
    Kourehpaz, A.
    Nikandish, R.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2021, 16 (01): : 97 - 104
  • [49] On the clique number of the complement of the annihilating ideal graph of a commutative ring
    Visweswaran S.
    Patel H.D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (2): : 307 - 320
  • [50] Some results on the complement of the annihilating ideal graph of a commutative ring
    Visweswaran, S.
    Patel, Hiren D.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (07)