Enhanced anti-chromium poisoning ability of high entropy La0.2Nd0.2Sm0.2Sr0.2Ba0.2Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells

被引:8
|
作者
Zheng, Tong [1 ]
Li, Zhiyuan [1 ]
Wang, Donggang [1 ]
Pan, Zhaoxu [1 ]
Sun, Haibin [1 ,3 ]
Song, Tao [2 ]
Zhao, Shikai [2 ]
机构
[1] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255049, Peoples R China
[2] Shandong Ind Ceram Res & Design Inst Co Ltd, Zibo, Peoples R China
[3] 266 Xincun West Rd, Zibo 255000, Peoples R China
关键词
Solid oxide fuel cells; Sr segregation; High-entropy oxides; Cr poisoning; COBALT-FREE CATHODE; PROTECTIVE-COATINGS; PERFORMANCE; DEPOSITION; KINETICS;
D O I
10.1016/j.jallcom.2024.173753
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The instability of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF6428) for Cr-containing atmospheres limits its utilization in the cathode of solid oxide fuel cells (SOFCs). High entropy La0.2Nd0.2Sm0.2Sr0.2Ba0.2Co0.2Fe0.8O3-delta (HE-LSCF) is presented as a potential Cr-resistant cathode in this paper. At a test temperature of 750 degrees C, the polarization resistance (R-p) of the cathode of HE-LSCF is 0.53 Omega cm(2) after 40 h of Cr-treatment, which is comparable with the original value without Cr-treatment (0.50 Omega cm(2) at 750 degrees C), and significantly lower than LSCF6428 cathodes with the same Cr-treatment condition (3.11 Omega cm(2) at 750 degrees C), suggesting an excellent ability of anti-chromium poisoning. Raman and DFT simulation results verify that the high-entropy structure effectively suppresses the segregation of SrO and prevents Cr vapor from reacting with the segregated SrO to form SrCrO4 due to the higher segregation energy (1.38 eV) and lower desorption energy (-2.55 eV) of HE-LSCF. The anode-supported single cell of NiO-SDC/SDC/HE-LSCF shows a peak power density of 556 mW cm(-2) at 700 degrees C with wet H-2 (with similar to 3 vol% H2O) fuels and ambient air oxidants, and maintains a stable cell performance after the Cr-treatment (537 mW cm(-2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Thermoelectric behavior of (Ba0.2Sr0.2Ca0.2La0.2Na0.2)CoO3 high entropy cobaltate-based perovskite
    Bhattacharya, Tathagata
    Banerjee, Ritwik
    Maiti, Tanmoy
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (46) : 28874 - 28883
  • [42] Evaluation of electrospun spinel-type high-entropy (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4, (Cr0.2Mn0.2Fe0.2Co0.2Zn0.2)3O4 and (Cr0.2Mn0.2Fe0.2Ni0.2Zn0.2)3O4 oxide nanofibers as electrocatalysts for oxygen evolution in alkaline medium
    Triolo, Claudia
    Schweidler, Simon
    Lin, Ling
    Pagot, Gioele
    Di Noto, Vito
    Breitung, Ben
    Santangelo, Saveria
    ENERGY ADVANCES, 2023, 2 (05): : 667 - 678
  • [43] Synthesis and characterization of La0.8Sr0.2Co0.8Fe0.2O3 nanoparticles for intermediate-low temperature solid oxide fuel cell cathodes
    Ding, C.
    Lin, H.
    Sato, K.
    Hashida, T.
    WATER DYNAMICS, 2008, 987 : 35 - +
  • [44] Formation and mechanical properties of Y-substituted (Ce0.2Zr0.2La0.2Sm0.2Nd0.2)O2-δ high-entropy fluorite oxide
    Ma, Bo
    Wen, Zhiqin
    Qin, Jiedong
    Lu, Taoyi
    Tang, Li
    Wu, Zhenyu
    Zhao, Yuhong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 7325 - 7332
  • [45] Nanocomposite BaZr0.7Sm0.1Y0.2O3-δ-La0.8Sr0.2Co0.2Fe0.8O3-δ materials for single layer fuel cell
    Raza, Rizwan
    Khan, Asifa
    Rafique, Asia
    Aunbreen, Ayesha
    Alzhtar, Kalsoom
    Ahmad, M. Ashfaq
    Akhtar, Sophia
    Hashmi, Khurrarn
    Ullah, Mehtab
    Ali, Rashid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) : 22280 - 22287
  • [46] High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/ La0.8Sr0.2Ga0.8Mg0.2O3-δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
    Wang, Sea-Fue
    Lu, Hsi-Chuan
    Hsu, Yung-Fu
    Jasinski, Piotr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5429 - 5438
  • [47] Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder
    Guo Meng
    Zhang Fengnian
    Miao Yang
    Liu Yufeng
    Yu Jun
    Gao Feng
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (04) : 431 - 435
  • [48] Electrochemical reduction of NO by solid electrolyte cells with La0.8Sr0.2MnO3-Ce0.8Sm0.2O1.9 composite cathodes
    Li, Wenjie
    Yu, Han
    Yu, Hongbing
    Yang, Nan
    Zhang, Shuyuan
    CHEMICAL ENGINEERING JOURNAL, 2019, 378
  • [49] AC Impedance Characterisation of a La0.8Sr0.2Co0.2Fe0.8O3-δ Electrode
    Kournoutis, V. Ch.
    Tietz, F.
    Bebelis, S.
    FUEL CELLS, 2009, 9 (06) : 852 - 860
  • [50] Synthesis and microstructure of (Ce0.2Zr0.2La0.2Sm0.2Nd0.2)O2-δ high-entropy oxides characterized by fluorite structure
    Ma, Bo
    Wen, Zhiqin
    Qin, Jiedong
    Wu, Zhenyu
    Liu, Junxiao
    Lv, Yunming
    Yu, Junjie
    Zhao, Yuhong
    CERAMICS INTERNATIONAL, 2024, 50 (01) : 1981 - 1989