Generalized negacyclic codes over finite fields

被引:0
|
作者
Jitman, Somphong [1 ]
Ling, San [2 ]
Tharnnukhroh, Jareena [2 ]
机构
[1] Silpakorn Univ, Dept Math, Fac Sci, Nakhon Pathom 73000, Thailand
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
关键词
Cyclotomic Classes; Negacyclic Codes; Constabelian Codes; Generalized Negacyclic Codes; Self-Dual Codes; Complementary Dual Codes; ABELIAN CODES;
D O I
10.1007/s12190-022-01753-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear codes with additional algebraic structures such as cyclic codes, negacyclic codes and abelian codes have become of interest due to their nice algebraic structures, wide applications and links with other mathematical objects. In this paper, a generalization of negacyclic codes is introduced and studied. Algebraic structures of such codes are given though cyclotomic classes of abelian groups and ideals in twisted group algebras. Recursive constructions and enumerations of such codes are presented. Characterizations of self-dual generalized negacyclic codes and complementary dual generalized negacyclic codes are given as well as their enumerations.
引用
收藏
页码:421 / 449
页数:29
相关论文
共 50 条
  • [31] On nonsystematic perfect codes over finite fields
    Malyugin S.A.
    Journal of Applied and Industrial Mathematics, 2010, 4 (2) : 218 - 230
  • [32] Codes over finite fields for multidimensional signals
    Dong, XD
    Soh, CB
    Gunawan, E
    JOURNAL OF ALGEBRA, 2000, 233 (01) : 105 - 121
  • [33] POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS
    REED, IS
    SOLOMON, G
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 300 - 304
  • [34] Dihedral Group Codes Over Finite Fields
    Fan, Yun
    Lin, Liren
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5016 - 5025
  • [35] Minimal linear codes over finite fields
    Heng, Ziling
    Ding, Cunsheng
    Zhou, Zhengchun
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 176 - 196
  • [36] Galois LCD codes over finite fields
    Liu, Xiusheng
    Fan, Yun
    Liu, Hualu
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 : 227 - 242
  • [37] NONEXISTENCE OF PERFECT CODES OVER FINITE FIELDS
    TIETAVAINEN, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (01) : 88 - 96
  • [38] CONSTRUCTIONS OF SUBSYSTEM CODES OVER FINITE FIELDS
    Aly, Salah A.
    Klappenecker, Andreas
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (05) : 891 - 912
  • [39] Shortened Linear Codes Over Finite Fields
    Liu, Yang
    Ding, Cunsheng
    Tang, Chunming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5119 - 5132
  • [40] Foundations of additive codes over finite fields
    Bhunia, Dipak K.
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Villanueva, Merce
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 104