Anomaly Detection for IoT Networks: Empirical Study

被引:1
|
作者
Elsayed, Marwa A. [1 ]
Russell, Patrick [1 ]
Nandy, Biswajit [2 ]
Seddigh, Nabil [2 ]
Zincir-Heywood, Nur [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 4R2, Canada
[2] Solana Networks, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
anomaly detection; unsupervised learning; IoT; ATTACK DETECTION; FRAMEWORK; INTERNET; THINGS;
D O I
10.1109/CCECE58730.2023.10288813
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Internet of Things (IoT) actively transforms physical objects, including portable, wearable, and implantable sensors, into an information ecosystem that enriches the technology and data in every aspect of life. This paper examines two anomaly detection approaches: novelty and outlier, for IoT networks. In this respect, we leverage four unsupervised learning algorithms, namely Isolation Forest (IF), Local Outlier Factor (LOF), One-Class Support Vector Machine (OSVM), and variational encoder (AE), on four publicly available IoT datasets. The experiments reveal that by embracing the novelty approach by considering only pure benign data for training, the AE model achieves a high F1-score and AUC up to 97% and 0.97.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] SurveilNet: A Lightweight Anomaly Detection System for Cooperative IoT Surveillance Networks
    Osifeko, Martins O.
    Hancke, Gerhard P.
    Abu-Mahfouz, Adnan M.
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25293 - 25306
  • [22] A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks
    DeMedeiros, Kyle
    Hendawi, Abdeltawab
    Alvarez, Marco
    SENSORS, 2023, 23 (03)
  • [23] IoT-GAN: Anomaly Detection for Time Series in IoT Based on Generative Adversarial Networks
    Chen, Xiaofei
    Zhang, Shuo
    Jiang, Qiao
    Chen, Jiayuan
    Huang, Hejiao
    Gu, Chonglin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 682 - 694
  • [24] Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
    Essop, Ismael
    Ribeiro, Jose C.
    Papaioannou, Maria
    Zachos, Georgios
    Mantas, Georgios
    Rodriguez, Jonathan
    SENSORS, 2021, 21 (04) : 1 - 31
  • [25] Anomaly Detection in IoT Data
    Kabi, Jason N.
    Maina, Ciira wa
    Mharakurwa, Edwell T.
    2023 IST-AFRICA CONFERENCE, IST-AFRICA, 2023,
  • [26] A New Outlier Detection Method for Anomaly Detection in IoT-Enabled Distribution Networks
    Mirzaie, Sara
    Bushehrian, Omid
    AD HOC & SENSOR WIRELESS NETWORKS, 2023, 55 (1-2) : 23 - 43
  • [27] Deep Learning-Driven Anomaly Detection for Green IoT Edge Networks
    Bushehri, Ahmad Shahnejat
    Amirnia, Ashkan
    Belkhiri, Adel
    Keivanpour, Samira
    de Magalhaes, Felipe Gohring
    Nicolescu, Gabriela
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (01): : 498 - 513
  • [28] Investigation of RBFN Application for Anomaly-Based Intrusion Detection on IoT Networks
    Upman, Vikas
    Goranin, Nikolaj
    PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 103 - 109
  • [29] Robust Anomaly Detection in IoT Networks using Deep SVDD and Contractive Autoencoder
    Aktar, Sharmin
    Nur, Abdullah Yasin
    18TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON 2024, 2024,
  • [30] A hybrid approach for efficient feature selection in anomaly intrusion detection for IoT networks
    Ayad, Aya G.
    Sakr, Nehal A.
    Hikal, Noha A.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (19): : 26942 - 26984