Daily Prediction of PV Power Output Using Particulate Matter Parameter with Artificial Neural Networks

被引:1
|
作者
Irmak, Erdal [1 ]
Yesilbudak, Mehmet [2 ]
Tasdemir, Oguz [3 ]
机构
[1] Gazi Univ, Fac Technol, Dept Elect & Elect Engn, Ankara, Turkiye
[2] Nevsehir Haci Bektas Veli Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, Nevsehir, Turkiye
[3] Kirsehir Ahi Evran Univ, Vocat Coll Kaman, Dept Elect & Elect, Kirsehir, Turkiye
关键词
PV power; daily prediction; artificial neural networks; PM10; parameter;
D O I
10.1109/ICSMARTGRID58556.2023.10171103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Renewable energy sources play a critical role in meeting the increasing energy demand. Among them, solar energy stands out with the advantages of being environmentally friendly and protecting the ecosystem. However, its variable structure requires predicting the energy to be produced, properly. In this study, the impact of PM10 parameter on the power output prediction of photovoltaic (PV) energy plants was analyzed in a detailed manner. By the developed prediction model based on artificial neural networks (ANNs), lower root mean squared error and mean absolute percentage error were achieved. As a result, PM10 parameter has seemed to be an efficient input for the daily PV power prediction.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [42] Prediction of atmospheric pollution by particulate matter using a neural network
    Perez, P
    Trier, A
    Silva, C
    Montano, R
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1000 - 1003
  • [43] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [44] Modelling of Carbon Monoxide and Suspended Particulate Matter Concentrations in a Rural Area Using Artificial Neural Networks
    Al-Sager, Saleh M.
    Almady, Saad S.
    Al-Janobi, Abdulrahman A.
    Bukhari, Abdulla M.
    Abdel-Sattar, Mahmoud
    Al-Hamed, Saad A.
    Aboukarima, Abdulwahed M.
    SUSTAINABILITY, 2024, 16 (22)
  • [45] Daily suspended sediment load prediction using artificial neural networks and support vector machines
    Lafdani, E. Kakaei
    Nia, A. Moghaddam
    Ahmadi, A.
    JOURNAL OF HYDROLOGY, 2013, 478 : 50 - 62
  • [46] Daily Prediction Model of Photovoltaic Power Generation Using a Hybrid Architecture of Recurrent Neural Networks and Shallow Neural Networks
    Castillo-Rojas, Wilson
    Bekios-Calfa, Juan
    Hernandez, Cesar
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2023, 2023
  • [47] Artificial Neural Networks for Daily Electricity Demand Prediction of Sri Lanka
    Karunathilake, Shashikala L.
    Nagahamulla, Harshani R. K.
    2017 17TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER) - 2017, 2017, : 128 - 133
  • [48] Forecasting intraday power output by a set of PV systems using recurrent neural networks and physical covariates
    Pierrick Bruneau
    David Fiorelli
    Christian Braun
    Daniel Koster
    Neural Computing and Applications, 2024, 36 (31) : 19515 - 19529
  • [49] A performance model using an analytical-numerical method and artificial neural networks for a PV plant output forecast
    Tevi, Gabriel Jean-Philippe
    Diouf, Djicknoum
    Kata, N'detigma
    Faye, Marie Emilienne
    Sene, Moustapha
    Seidou, Maiga Amadou
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1503 - 1508
  • [50] Prediction of normalized polarity parameter in binary mixed solvent systems using artificial neural networks
    Habibi-Yangjeh, A
    Nooshyar, M
    PHYSICS AND CHEMISTRY OF LIQUIDS, 2005, 43 (03) : 239 - 247