ON A BOUNDARY VALUE PROBLEM FOR HALE TYPE FRACTIONAL FUNCTIONAL-DIFFERENTIAL INCLUSIONS WITH CAUSAL MULTIOPERATORS IN A BANACH SPACE

被引:2
|
作者
Obukhovskii, Valeri [1 ]
Petrosyan, Garik [1 ,2 ]
Soroka, Maria [1 ]
Wen, Ching-Feng [3 ,4 ,5 ]
机构
[1] Voronezh State Pedag Univ, Fac Phys & Math, Voronezh 394043, Russia
[2] Voronezh State Univ Engn Technol, Res Ctr, Voronezh 394036, Russia
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80708, Taiwan
[4] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 80708, Taiwan
[5] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 80708, Taiwan
来源
关键词
Caputo fractional derivative; Causal multivalued operator; Condensing multivalued map; Fractional functional differential inclusion; Measure of noncompactness; Topological degree; EQUATIONS;
D O I
10.23952/jnva.7.2023.6.05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of mild solutions to a nonlocal boundary value problem for fractional-functional differential inclusions of the Hale type in a separable Banach space. We assume that the linear part of an inclusion is an infinitesimal generator of a bounded C0-semigroup of linear operators, and the nonlinear part is a causal multivalued operator.
引用
收藏
页码:957 / 970
页数:14
相关论文
共 50 条
  • [31] Step method for a functional-differential equation in Banach space
    Muresan, Viorica
    CARPATHIAN JOURNAL OF MATHEMATICS, 2008, 24 (03) : 363 - 369
  • [32] Existence Results for a Multipoint Fractional Boundary Value Problem in the Fractional Derivative Banach Space
    Boucenna, Djalal
    Chidouh, Amar
    Torres, Delfim F. M.
    AXIOMS, 2022, 11 (06)
  • [33] BOUNDARY VALUE PROBLEMS FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Hammou, Amouria
    Hamani, Samira
    Henderson, Johnny
    ARCHIVUM MATHEMATICUM, 2022, 58 (04): : 227 - 240
  • [34] On Noncompact Fractional Order Differential Inclusions with Generalized Boundary Condition and Impulses in a Banach Space
    Benedetti, Irene
    Obukhovskii, Valeri
    Taddei, Valentina
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [35] Nonlocal Integral Boundary Value Problem of Bagley-Torvik Type Fractional Differential Equations and Inclusions
    Lizhen CHEN
    Badawi Hamza Eibadawi IBRAHIM
    Gang LI
    JournalofMathematicalResearchwithApplications, 2019, 39 (04) : 383 - 394
  • [36] Floquet Boundary Value Problem of Fractional Functional Differential Equations
    Zhou, Yong
    Tian, Yuansheng
    He, Yun-Yun
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (50) : 1 - 13
  • [37] On the periodic boundary value problem for first-order functional-differential equations
    Lomtatidze, AG
    Hakl, R
    Puza, B
    DIFFERENTIAL EQUATIONS, 2003, 39 (03) : 344 - 352
  • [38] BOUNDARY VALUE PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS IN BANACH SPACES
    Hamani, Samira
    Henderson, Johnny
    Nieto, Juan J.
    FIXED POINT THEORY, 2017, 18 (02): : 591 - 599
  • [39] On solvability conditions of a boundary value problem for a nonlinear abstract functional-differential equation
    Zhukovskii, E. S.
    Zhukovskaya, T. V.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 50 - 51
  • [40] ON FUNCTIONAL-DIFFERENTIAL INCLUSIONS IN BANACH-SPACE WITH NON-CONVEX RIGHT-HAND SIDE
    TOLSTONOGOV, AA
    FINOGENKO, IA
    DOKLADY AKADEMII NAUK SSSR, 1980, 254 (01): : 45 - 49