Structural basis of metallo-β-lactamase resistance to taniborbactam

被引:8
|
作者
Drusin, Salvador I. [1 ]
Le Terrier, Christophe [2 ,3 ]
Poirel, Laurent [2 ,4 ]
Bonomo, Robert A. [5 ,6 ,7 ,8 ,9 ,10 ,11 ]
Vila, Alejandro J. [1 ,11 ,12 ]
Moreno, Diego M. [1 ,13 ]
机构
[1] Univ Nacl Rosario, Fac Ciencias Bioquim & Farmaceut, Rosario, Argentina
[2] Univ Fribourg, Fac Sci & Med, Emerging Antibiot Resistance, Med & Mol Microbiol, Fribourg, Switzerland
[3] Univ Hosp Geneva, Div Intens Care Unit, Geneva, Switzerland
[4] Swiss Natl Reference Ctr Emerging Antibiot Resista, Fribourg, Switzerland
[5] Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Res Serv & GRECC, Cleveland, OH USA
[6] Univ Hosp Cleveland Med Ctr, Dept Med, Cleveland, OH USA
[7] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH USA
[8] Case Western Reserve Univ, Sch Med, Dept Mol Biol & Microbiol, Cleveland, OH USA
[9] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH USA
[10] Case Western Reserve Univ, Sch Med, Dept Prote & Bioinformat, Cleveland, OH USA
[11] CWRU Cleveland VAMC Ctr Antimicrobial Resistance &, Cleveland, OH 44106 USA
[12] Univ Nacl Rosario, Inst Biol Mol & Celular Rosario IBR, CONICET, Rosario, Argentina
[13] Univ Nacl Rosario, Inst Quim Rosario IQUIR, CONICET, Rosario, Argentina
基金
美国国家卫生研究院;
关键词
taniborbactam resistance; metallo-beta-lactamases; NDM-9; CARBAPENEM-RESISTANT; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; INHIBITORS; ACCURACY; NDM-9;
D O I
10.1128/aac.01168-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The design of inhibitors against metallo-beta-lactamases (MBLs), the largest family of carbapenemases, has been a strategic goal in designing novel antimicrobial therapies. In this regard, the development of bicyclic boronates, such as taniborbactam (TAN) and xeruborbactam, is a major achievement that may help in overcoming the threat of MBL-producing and carbapenem-resistant Gram-negative pathogens. Of concern, a recent report has shown that New Delhi MBL-9 (NDM-9) escapes the inhibitory action of TAN by a single amino acid substitution with respect to New Delhi MBL-1 (NDM-1), the most widely disseminated MBL. Here, we report a docking and computational analysis that identifies that "escape variants" against TAN can arise by disruption of the electrostatic interaction of negative charges in the active site loops of MBLs with the N-(2-aminoethyl)cyclohexylamine side chain of TAN. These changes result in non-productive binding modes of TAN that preclude reaction with the MBLs, a phenomenon that is not restricted to NDM-9. This analysis demonstrates that single amino acid substitutions in non-essential residues in MBL loops can unexpectedly elicit resistance to TAN.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Elucidation of critical chemical moieties of metallo-β-lactamase inhibitors and prioritisation of target metallo-β-lactamases
    Lee, Jung Hun
    Kim, Sang-Gyu
    Jang, Kyung-Min
    Shin, Kyoungmin
    Jin, Hyeonku
    Kim, Dae-Wi
    Jeong, Byeong Chul
    Lee, Sang Hee
    JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 2024, 39 (01)
  • [42] Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors
    Somboro, Anou M.
    Sekyere, John Osei
    Amoako, Daniel G.
    Essack, Sabiha Y.
    Bester, Linda A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2018, 84 (18)
  • [43] Structural Basis of Metallo-β-lactamase Inhibition by N-Sulfamoylpyrrole-2-carboxylates (vol 7, pg 1809, 2021)
    Farley, Alistair J. M.
    Ermolovich, Yuri
    Calvopina, Karina
    Rabe, Patrick
    Panduwawala, Tharindi
    Brem, Jurgen
    Bjorkling, Fredrik
    Schofield, Christopher J.
    ACS INFECTIOUS DISEASES, 2021, 7 (11): : 3124 - 3124
  • [44] Emerging Carbapenem Resistance in the Context of a New Metallo-β-lactamase (NDM-1)
    Basu, Sulagna
    Singh, Arun K.
    Nair, G. Balakrish
    NATIONAL MEDICAL JOURNAL OF INDIA, 2010, 23 (05): : 261 - 262
  • [45] Antibiotic resistance in Zn(II)-deficient environments: metallo-β-lactamase activation in the periplasm
    Meini, Maria-Rocio
    Gonzalez, Lisandro J.
    Vila, Alejandro J.
    FUTURE MICROBIOLOGY, 2013, 8 (08) : 947 - 949
  • [46] New Delhi metallo-β-lactamase: a cautionary tale
    Muir, A.
    Weinbren, M. J.
    JOURNAL OF HOSPITAL INFECTION, 2010, 75 (03) : 239 - 240
  • [47] Antibiotic resistance:: Mono- and dinuclear zinc complexes as metallo-β-lactamase mimics
    Tamilselvi, A.
    Nethaji, Munirathinam
    Mugesh, G.
    CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (30) : 7797 - 7806
  • [48] Emergence of New Delhi Metallo-β-Lactamase, Austria
    Zarfel, Gernot
    Hoenigl, Martin
    Leitner, Eva
    Salzer, Helmut J. F.
    Feierl, Gebhard
    Masoud, Lilian
    Valentin, Thomas
    Krause, Robert
    Grisold, Andrea J.
    EMERGING INFECTIOUS DISEASES, 2011, 17 (01) : 129 - 130
  • [49] Novel DNA and RNA inhibitors of metallo-β-lactamase
    Shaw, RW
    Kim, SK
    Kim, KM
    Cottenoir, M
    Sims, CL
    Peng, J
    Fisher, AJ
    FASEB JOURNAL, 2006, 20 (05): : A898 - A898
  • [50] Polypyridine ligands as potential metallo-β-lactamase inhibitors
    La Piana, Luana
    Viaggi, Valentina
    Principe, Luigi
    Di Bella, Stefano
    Luzzaro, Francesco
    Viale, Maurizio
    Bertola, Nadia
    Vecchio, Graziella
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2021, 215