Post quantum Ostrowski-type inequalities for coordinated convex functions

被引:0
|
作者
Wannalookkhee, Fongchan [1 ]
Nonlaopon, Kamsing [1 ]
Ntouyas, Sortiris K. [2 ,3 ]
Budak, Huseyin [4 ]
机构
[1] Khon Kaen Univ, Dept Math, Khon Kaen, Thailand
[2] Univ Ioannina, Dept Math, Ioannina, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
[4] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
convex function; coordinated convex function; Ostrowski inequality; (p; q)-derivative; q)-integral; q)-calculus; HADAMARD INEQUALITY; ANALOGS; (P;
D O I
10.1002/mma.8748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we give a new notion of (p, q) derivatives for continuous functions on coordinates. We also derive post quantum Ostrowski-type inequalities for coordinated convex functions. Our significant results are considered as the generalizations of other results that appeared in the literature.
引用
收藏
页码:4159 / 4183
页数:25
相关论文
共 50 条
  • [31] Some New Post-Quantum Simpson's Type Inequalities for Coordinated Convex Functions
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    MATHEMATICS, 2022, 10 (06)
  • [32] On Ostrowski-type inequalities via Fink identity
    Khan, Asif R.
    Nabi, Hira
    Pecaric, Josip E.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [33] Ostrowski-type theorems for harmonic functions
    Manolaki, Myrto
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 480 - 488
  • [34] QUANTUM OSTROWSKI INEQUALITIES FOR q-DIFFERENTIABLE CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Awan, Muhammad Uzair
    Noor, Khalida Inayat
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1013 - 1018
  • [35] Fractional Weighted Ostrowski-Type Inequalities and Their Applications
    Kashuri, Artion
    Meftah, Badreddine
    Mohammed, Pshtiwan Othman
    Lupas, Alina Alb
    Abdalla, Bahaaeldin
    Hamed, Y. S.
    Abdeljawad, Thabet
    SYMMETRY-BASEL, 2021, 13 (06):
  • [36] Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables
    Ali, Muhammad Aamir
    Chu, Yu-Ming
    Budak, Hueseyin
    Akkurt, Abdullah
    Yildirim, Hueseyin
    Zahid, Manzoor Ahmed
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [37] LOCAL FRACTIONAL OSTROWSKI-TYPE INEQUALITIES FOR GENERALIZED s - φ-CONVEX FUNCTION ON FRACTAL SETS
    An, Yanrong
    Ali, Muhammad aamir
    Xu, Chenchen
    Liu, Wei
    Shi, Fangfang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [38] Post-quantum Ostrowski type integral inequalities for functions of two variables
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sial, Ifra Bashir
    AIMS MATHEMATICS, 2022, 7 (05): : 8035 - 8063
  • [39] Fractional Ostrowski type inequalities for differentiable harmonically convex functions
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Promsakon, Chanon
    AIMS MATHEMATICS, 2022, 7 (03): : 3939 - 3958
  • [40] Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables
    Muhammad Aamir Ali
    Yu-Ming Chu
    Hüseyin Budak
    Abdullah Akkurt
    Hüseyin Yıldırım
    Manzoor Ahmed Zahid
    Advances in Difference Equations, 2021