Natural Grasp Intention Recognition Based on Gaze in Human-Robot Interaction

被引:11
|
作者
Yang, Bo [1 ]
Huang, Jian [1 ]
Chen, Xinxing [2 ,3 ]
Li, Xiaolong [1 ]
Hasegawa, Yasuhisa [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automation, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Shenzhen Key Lab Biomimet Robot & Intelligent Syst, Shenzhen 518055, Peoples R China
[3] Rehabil Robot Univ, Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat, Shenzhen 518055, Peoples R China
[4] Nagoya Univ, Dept Micronano Mech Sci & Engn, Furo cho Chikusa ku, Nagoya 4648603, Japan
基金
中国国家自然科学基金;
关键词
Grasp intention recognition; gaze movement modeling; human-robot interaction; feature extraction; EYE-MOVEMENTS; PREDICTION; VISION;
D O I
10.1109/JBHI.2023.3238406
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: While neuroscience research has established a link between vision and intention, studies on gaze data features for intention recognition are absent. The majority of existing gaze-based intention recognition approaches are based on deliberate long-term fixation and suffer from insufficient accuracy. In order to address the lack of features and insufficient accuracy in previous studies, the primary objective of this study is to suppress noise from human gaze data and extract useful features for recognizing grasp intention. Methods: We conduct gaze movement evaluation experiments to investigate the characteristics of gaze motion. The target-attracted gaze movement model (TAGMM) is proposed as a quantitative description of gaze movement based on the findings. A Kalman filter (KF) is used to reduce the noise in the gaze data based on TAGMM. We conduct gaze-based natural grasp intention recognition evaluation experiments to collect the subject's gaze data. Four types of features describing gaze point dispersion (f(var)), gaze point movement (f(gm)), head movement (f(hm)), and distance from the gaze points to objects (f(dj)) are then proposed to recognize the subject's grasp intentions. With the proposed features, we perform intention recognition experiments, employing various classifiers, and the results are compared with different methods. Results: The statistical analysis reveals that the proposed features differ significantly across intentions, offering the possibility of employing these features to recognize grasp intentions. We demonstrated the intention recognition performance utilizing the TAGMM and the proposed features in within-subject and cross-subject experiments. The results indicate that the proposed method can recognize the intention with accuracy improvements of 44.26% (within-subject) and 30.67% (cross-subject) over the fixation-based method. The proposed method also consumes less time (34.87 ms) to recognize the intention than the fixation-based method (about 1 s). Conclusion: This work introduces a novel TAGMM for modeling gaze movement and a variety of practical features for recognizing grasp intentions. Experiments confirm the effectiveness of our approach. Significance: The proposed TAGMM is capable of modeling gaze movements and can be utilized to process gaze data, and the proposed features can reveal the user's intentions. These results contribute to the development of gaze-based human-robot interaction.
引用
收藏
页码:2059 / 2070
页数:12
相关论文
共 50 条
  • [21] Control of bidirectional physical human-robot interaction based on the human intention
    Leica, Paulo
    Roberti, Flavio
    Monllor, Matias
    Toibero, Juan M.
    Carelli, Ricardo
    INTELLIGENT SERVICE ROBOTICS, 2017, 10 (01) : 31 - 40
  • [22] Intention Recognition in Physical Human-Robot Interaction Based on Radial Basis Function Neural Network
    Liu, Zhiguang
    Hao, Jianhong
    JOURNAL OF ROBOTICS, 2019, 2019
  • [23] Imitative Neural Mechanism-Based Behavior Intention Recognition System in Human-Robot Interaction
    Ko, Kwang-Eun
    Sim, Kwee-Bo
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2014, 11 (04)
  • [24] Human-robot Interaction Method Combining Human Pose Estimation and Motion Intention Recognition
    Cheng, Yalin
    Yi, Pengfei
    Liu, Rui
    Dong, Jing
    Zhou, Dongsheng
    Zhang, Qiang
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 958 - 963
  • [25] Robot Gaze Behavior Affects Honesty in Human-Robot Interaction
    Schellen, Elef
    Bossi, Francesco
    Wykowska, Agnieszka
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [26] A Method of Intention Estimation for Human-Robot Interaction
    Luo, Jing
    Liu, Chao
    Wang, Ning
    Yang, Chenguang
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 69 - 80
  • [27] Human-robot interaction based on gesture and movement recognition
    Li, Xing
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 81
  • [28] Human-Robot Interaction in an Unknown Human Intention scenario
    Awais, Muhammad
    Henrich, Dominik
    2013 11TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT), 2013, : 89 - 94
  • [29] Behavior Hierarchy-Based Affordance Map for Recognition of Human Intention and Its Application to Human-Robot Interaction
    Han, Ji-Hyeong
    Lee, Seung-Jae
    Kim, Jong-Hwan
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2016, 46 (05) : 708 - 722
  • [30] Implementation of Gaze Estimation in Dialogue to Human-Robot Interaction
    Somashekarappa, Vidya
    2022 10TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS, ACIIW, 2022,