Wide-Bandgap Perovskite Solar Cell Using a Fluoride-Assisted Surface Gradient Passivation Strategy

被引:101
|
作者
Yan, Nan [1 ]
Gao, Yan [2 ]
Yang, Junjie [2 ]
Fang, Zhimin [1 ]
Feng, Jiangshan [1 ]
Wu, Xiaojun [2 ]
Chen, Tao [2 ]
Liu, Shengzhong [1 ,3 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ, Xian 710119, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, iChEM, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Defects; Fluoride; Open-Circuit Voltage Deficit; Perovskite; Wide Band Gap; OPEN-CIRCUIT VOLTAGES; HALIDE PEROVSKITES; EFFICIENT; SILICON;
D O I
10.1002/anie.202216668
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide-band gap (1.68 eV) perovskite solar cells (PSCs) are important components of perovskite/Si tandem devices. However, the efficiency of wide band gap PSCs has been limited by their huge open-circuit voltage (V-oc) deficit due to non-radiative recombination. Deep-level acceptor defects are identified as the major killers of V-oc, and they can be effectively improved by passivation with ammonium salts. Theoretical calculation predicts that increasing the distance between F and -NH3+ of fluorinated ammonium can dramatically enhance the electropositivity of -NH3+ terminals, thus providing strong adsorption onto the negatively charged I-A and I-Pb anti-site defects. Characterizations further confirm that surface gradient passivation employing p-FPEAI demonstrates the most efficient passivation effect. Consequently, a record-efficiency of 21.63 % with the smallest V-oc deficit of 441 mV is achieved for 1.68 eV-band gap inverted PSCs. Additionally, a flexible PSC and 1 cm(2) opaque device also deliver the highest PCEs of 21.02 % and 19.31 %, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Passivator-Assisted Close Space Annealing for High-Performance Wide-Bandgap Perovskite Solar Cells
    Zhao, Yue
    Ma, Tianshu
    Liu, Tingting
    Zhou, Luwei
    Wu, Zhanghao
    Chen, Chen
    Liu, Yuhui
    Chen, Cong
    Ma, Dong
    Qin, Linling
    Zhao, Dewei
    Wang, Changlei
    Li, Xiaofeng
    SOLAR RRL, 2024, 8 (21)
  • [42] Defect passivation engineering of wide-bandgap perovskites for high-performance solar cells
    Wu, Xiao
    Xiong, Guoqing
    Yue, Ziyao
    Dong, Ziyao
    Cheng, Yuanhang
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (03) : 800 - 813
  • [43] Investigation of the Selectivity of Carrier Transport Layers in Wide-Bandgap Perovskite Solar Cells
    Kavadiya, Shalinee
    Onno, Arthur
    Boyd, Caleb C.
    Wang, Xingyi
    Cetta, Alexa
    McGehee, Michael D.
    Holman, Zachary C.
    SOLAR RRL, 2021, 5 (07)
  • [44] Tailoring the Grain Boundaries of Wide-Bandgap Perovskite Solar Cells by Molecular Engineering
    Emshadi, Khalid
    Ghimire, Nabin
    Gurung, Ashim
    Bahrami, Behzad
    Pathak, Rajesh
    Bobba, Raja Sekhar
    Lamsal, Buddhi Sagar
    Rahman, Sheikh Ifatur
    Chowdhury, Ashraful Haider
    Chen, Ke
    Laskar, Md Ashiqur Rahman
    Luo, Wenqin
    Elbohy, Hytham
    Qiao, Quinn
    SOLAR RRL, 2020, 4 (12)
  • [45] Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells
    Larina, L. L.
    Alexeeva, O. V.
    Almjasheva, O. V.
    Gusarov, V. V.
    Kozlov, S. S.
    Nikolskaia, A. B.
    Vildanova, M. F.
    Shevaleevskiy, O. I.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (01): : 70 - 75
  • [46] Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells
    Du, Shuxian
    Yang, Jing
    Qu, Shujie
    Lan, Zhineng
    Sun, Tiange
    Dong, Yixin
    Shang, Ziya
    Liu, Dongxue
    Yang, Yingying
    Yan, Luyao
    Wang, Xinxin
    Huang, Hao
    Ji, Jun
    Cui, Peng
    Li, Yingfeng
    Li, Meicheng
    MATERIALS, 2022, 15 (09)
  • [47] Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells
    Bingbing Chen
    Pengyang Wang
    Ningyu Ren
    Renjie Li
    Ying Zhao
    Xiaodan Zhang
    Journal of Semiconductors, 2022, (05) : 93 - 107
  • [48] Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells
    Chen, Bingbing
    Wang, Pengyang
    Ren, Ningyu
    Li, Renjie
    Zhao, Ying
    Zhang, Xiaodan
    JOURNAL OF SEMICONDUCTORS, 2022, 43 (05)
  • [49] Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells
    Ye, Haoran
    Xu, Weiquan
    Tang, Fei
    Yu, Bohao
    Zhang, Cuiling
    Ma, Nanxi
    Lu, Feiping
    Yang, Yuzhao
    Shen, Kai
    Duan, Weiyuan
    Lambertz, Andreas
    Ding, Kaining
    Mai, Yaohua
    SOLAR RRL, 2023, 7 (03)
  • [50] Reductive cation for scalable wide-bandgap perovskite solar cells in ambient air
    Yang, Guang
    Gu, Hangyu
    Yin, Jun
    Fei, Chengbin
    Shi, Zhifang
    Shi, Xiaoqiang
    Ying, Xingjian
    Huang, Jinsong
    NATURE SUSTAINABILITY, 2025, : 456 - 463