On Locally Conformally Kahler Threefolds with Algebraic Dimension Two

被引:2
|
作者
Angella, Daniele [1 ]
Parton, Maurizio [2 ]
Vuletescu, Victor [3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ G dAnnunzio, Dipartimento Econ, Viale Pineta 4, I-65129 Pescara, Italy
[3] Univ Bucharest, Fac Math & Informat, Acad St 14, Bucharest 010014, Romania
关键词
MINIMAL MODELS; COMPLEX;
D O I
10.1093/imrn/rnab362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is part of an attempt of understanding non-Kahler threefolds. We start by looking at compact complex non-Kahler threefolds with algebraic dimension two and admitting lcK metrics. Under certain assumptions, we prove that they are blown-up quasi-bundles over a projective surface.
引用
收藏
页码:3948 / 3969
页数:22
相关论文
共 50 条
  • [21] Topology of Locally Conformally Kahler Manifolds with Potential
    Ornea, Liviu
    Verbitsky, Misha
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (04) : 717 - 726
  • [22] Coverings of locally conformally Kahler complex spaces
    Preda, Ovidiu
    Stanciu, Miron
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 639 - 651
  • [23] COMPACT HOMOGENEOUS LOCALLY CONFORMALLY KAHLER MANIFOLDS
    Hasegawa, Keizo
    Kamishima, Yoshinobu
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (03) : 683 - 703
  • [24] Isometric immersions of locally conformally Kahler manifolds
    Angella, Daniele
    Zedda, Michela
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (01) : 37 - 55
  • [25] Classification of non-Kahler surfaces and locally conformally Kahler geometry
    Verbitsky, M. S.
    Vuletescu, V.
    Ornea, L.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (02) : 261 - 289
  • [26] A note on Euler number of locally conformally Kahler manifolds
    Huang, Teng
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 1725 - 1733
  • [27] Locally conformally Kahler manifolds with holomorphic Lee field
    Moroianu, Andrei
    Moroianu, Sergiu
    Ornea, Liviu
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 60 : 33 - 38
  • [28] Locally conformally Kahler structures on unimodular Lie groups
    Andrada, A.
    Origlia, M.
    GEOMETRIAE DEDICATA, 2015, 179 (01) : 197 - 216
  • [29] Blow-ups of Locally Conformally Kahler Manifolds
    Ornea, Liviu
    Verbitsky, Misha
    Vuletescu, Victor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (12) : 2809 - 2821
  • [30] Hopf surfaces in locally conformally Kahler manifolds with potential
    Ornea, Liviu
    Verbitsky, Misha
    GEOMETRIAE DEDICATA, 2020, 207 (01) : 219 - 226