A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT

被引:12
|
作者
Abbas, Salam A. [1 ]
Bailey, Ryan T. [1 ]
White, Jeremy T. [2 ]
Arnold, Jeffrey G. [3 ]
White, Michael J. [3 ]
Cerkasova, Natalja [4 ]
Gao, Jungang [4 ]
机构
[1] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80521 USA
[2] INTERA Inc, Perth, Australia
[3] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
[4] Texas A&M AgriLife, Blackland Research & Extens Ctr, Temple, TX 76502 USA
基金
美国农业部;
关键词
ENSEMBLE SMOOTHER; DATA ASSIMILATION; WATER-QUALITY; QUANTIFICATION; CONDUCTIVITY; AREA; SOIL;
D O I
10.5194/hess-28-21-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Parameter sensitivity analysis plays a critical role in efficiently determining main parameters, enhancing the effectiveness of the estimation of parameters and uncertainty quantification in hydrologic modeling. In this paper, we demonstrate an uncertainty and sensitivity analysis technique for the holistic Soil and Water Assessment Tool (SWAT + ) model coupled with new gwflow module, spatially distributed, physically based groundwater flow modeling. The main calculated groundwater inflows and outflows include boundary exchange, pumping, saturation excess flow, groundwater-surface water exchange, recharge, groundwater-lake exchange and tile drainage outflow. We present the method for four watersheds located in different areas of the United States for 16 years (2000-2015), emphasizing regions of extensive tile drainage (Winnebago River, Minnesota, Iowa), intensive surface-groundwater interactions (Nanticoke River, Delaware, Maryland), groundwater pumping for irrigation (Cache River, Missouri, Arkansas) and mountain snowmelt (Arkansas Headwaters, Colorado). The main parameters of the coupled SWAT + gwflow model are estimated utilizing the parameter estimation software PEST. The monthly streamflow of holistic SWAT + gwflow is evaluated based on the Nash-Sutcliffe efficiency index (NSE), percentage bias (PBIAS), determination coefficient (R-2) and Kling-Gupta efficiency coefficient (KGE), whereas groundwater head is evaluated using mean absolute error (MAE). The Morris method is employed to identify the key parameters influencing hydrological fluxes. Furthermore, the iterative ensemble smoother (iES) is utilized as a technique for uncertainty quantification (UQ) and parameter estimation (PE) and to decrease the computational cost owing to the large number of parameters. Depending on the watershed, key identified selected parameters include aquifer specific yield, aquifer hydraulic conductivity, recharge delay, streambed thickness, streambed hydraulic conductivity, area of groundwater inflow to tile, depth of tiles below ground surface, hydraulic conductivity of the drain perimeter, river depth (for groundwater flow processes), runoff curve number (for surface runoff processes), plant uptake compensation factor, soil evaporation compensation factor (for potential and actual evapotranspiration processes), soil available water capacity and percolation coefficient (for soil water processes). The presence of gwflow parameters permits the recognition of all key parameters in the surface and/or subsurface flow processes, with results substantially differing if the base SWAT + models are utilized.
引用
收藏
页码:21 / 48
页数:28
相关论文
共 50 条
  • [41] Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Models for an Agricultural Watershed in India
    Singh, Ajai
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2016, 39 (03): : 213 - 216
  • [42] Effect of Watershed Subdivision on SWAT Modeling with Consideration of Parameter Uncertainty
    Gong, Yongwei
    Shen, Zhenyao
    Liu, Ruimin
    Wang, Xiujuan
    Chen, Tao
    JOURNAL OF HYDROLOGIC ENGINEERING, 2010, 15 (12) : 1070 - 1074
  • [43] Sensitivity analysis and predictive uncertainty using inundation observations for parameter estimation in open-channel inverse problem
    Roux, Helene
    Dartus, Denis
    JOURNAL OF HYDRAULIC ENGINEERING, 2008, 134 (05) : 541 - 549
  • [44] Parameter estimation and uncertainty analysis for a watershed model
    Gallagher, Mark
    Doherty, John
    ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (07) : 1000 - 1020
  • [45] Uncertainty Analysis in Photovoltaic Cell Parameter Estimation
    Attivissimo, Filippo
    Di Nisio, Attilio
    Savino, Mario
    Spadavecchia, Maurizio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (05) : 1334 - 1342
  • [46] Modeling metal-sediment interaction processes: Parameter sensitivity assessment and uncertainty analysis
    Cho, Eunju
    Arhonditsis, George B.
    Khim, Jeehyeong
    Chung, Sewoong
    Heo, Tae Young
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 80 : 159 - 174
  • [47] Modeling the rice phenology and production in China with SIMRIW:sensitivity analysis and parameter estimation
    Shuai ZHANG
    Fulu TAO
    Runhe SHI
    Frontiers of Earth Science, 2014, 8 (04) : 505 - 511
  • [48] Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods
    Castaings, W.
    Dartus, D.
    Le Dimet, F. -X.
    Saulnier, G. -M.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (04) : 503 - 517
  • [49] Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment
    Jiang, Yan
    Liu, Changming
    Li, Xuyong
    Liu, Lifang
    Wang, Hongrui
    ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 67 : 72 - 88
  • [50] SENSITIVITY ANALYSIS AND PARAMETER-ESTIMATION IN DYNAMIC MODELING OF CHEMICAL-KINETICS
    MILLER, D
    FRENKLACH, M
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1983, 15 (07) : 677 - 696