A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT

被引:12
|
作者
Abbas, Salam A. [1 ]
Bailey, Ryan T. [1 ]
White, Jeremy T. [2 ]
Arnold, Jeffrey G. [3 ]
White, Michael J. [3 ]
Cerkasova, Natalja [4 ]
Gao, Jungang [4 ]
机构
[1] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80521 USA
[2] INTERA Inc, Perth, Australia
[3] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
[4] Texas A&M AgriLife, Blackland Research & Extens Ctr, Temple, TX 76502 USA
基金
美国农业部;
关键词
ENSEMBLE SMOOTHER; DATA ASSIMILATION; WATER-QUALITY; QUANTIFICATION; CONDUCTIVITY; AREA; SOIL;
D O I
10.5194/hess-28-21-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Parameter sensitivity analysis plays a critical role in efficiently determining main parameters, enhancing the effectiveness of the estimation of parameters and uncertainty quantification in hydrologic modeling. In this paper, we demonstrate an uncertainty and sensitivity analysis technique for the holistic Soil and Water Assessment Tool (SWAT + ) model coupled with new gwflow module, spatially distributed, physically based groundwater flow modeling. The main calculated groundwater inflows and outflows include boundary exchange, pumping, saturation excess flow, groundwater-surface water exchange, recharge, groundwater-lake exchange and tile drainage outflow. We present the method for four watersheds located in different areas of the United States for 16 years (2000-2015), emphasizing regions of extensive tile drainage (Winnebago River, Minnesota, Iowa), intensive surface-groundwater interactions (Nanticoke River, Delaware, Maryland), groundwater pumping for irrigation (Cache River, Missouri, Arkansas) and mountain snowmelt (Arkansas Headwaters, Colorado). The main parameters of the coupled SWAT + gwflow model are estimated utilizing the parameter estimation software PEST. The monthly streamflow of holistic SWAT + gwflow is evaluated based on the Nash-Sutcliffe efficiency index (NSE), percentage bias (PBIAS), determination coefficient (R-2) and Kling-Gupta efficiency coefficient (KGE), whereas groundwater head is evaluated using mean absolute error (MAE). The Morris method is employed to identify the key parameters influencing hydrological fluxes. Furthermore, the iterative ensemble smoother (iES) is utilized as a technique for uncertainty quantification (UQ) and parameter estimation (PE) and to decrease the computational cost owing to the large number of parameters. Depending on the watershed, key identified selected parameters include aquifer specific yield, aquifer hydraulic conductivity, recharge delay, streambed thickness, streambed hydraulic conductivity, area of groundwater inflow to tile, depth of tiles below ground surface, hydraulic conductivity of the drain perimeter, river depth (for groundwater flow processes), runoff curve number (for surface runoff processes), plant uptake compensation factor, soil evaporation compensation factor (for potential and actual evapotranspiration processes), soil available water capacity and percolation coefficient (for soil water processes). The presence of gwflow parameters permits the recognition of all key parameters in the surface and/or subsurface flow processes, with results substantially differing if the base SWAT + models are utilized.
引用
收藏
页码:21 / 48
页数:28
相关论文
共 50 条
  • [1] Uncertainty and sensitivity analysis techniques for hydrologic modeling
    Mishra, Srikanta
    JOURNAL OF HYDROINFORMATICS, 2009, 11 (3-4) : 282 - 296
  • [2] Multisource hydrologic modeling uncertainty analysis using the IBUNE framework in a humid catchment
    Li, Binquan
    He, Yingqing
    Ren, Liliang
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (01) : 37 - 50
  • [3] PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS - APPLICATIONS TO HYDROLOGIC MODELS.
    Sorooshian, S.
    Arfi, F.
    Loparo, K.
    Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 1980, 2
  • [4] Sensitivity analysis for a thermohydrodynamic model: Uncertainty analysis and parameter estimation
    Fiorini, Camilla
    Puscas, Maria Adela
    Despres, Bruno
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 (25-33) : 25 - 33
  • [5] Parameter estimation and uncertainty analysis in hydrological modeling
    Herrera, Paulo A.
    Marazuela, Miguel Angel
    Hofmann, Thilo
    WILEY INTERDISCIPLINARY REVIEWS-WATER, 2022, 9 (01):
  • [6] Hydrologic modeling for the gandak basin using swat with sensitivity considerations
    1600, CAFET INNOVA Technical Society, 1-2-18/103, Mohini Mansion, Gagan Mahal Road,, Domalguda, Hyderabad, 500029, India (07):
  • [7] Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
    Larabi, Samah
    Mai, Juliane
    Schnorbus, Markus
    Tolson, Bryan A.
    Zwiers, Francis
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (17) : 3241 - 3263
  • [8] PAPIRUS, a parallel computing framework for sensitivity analysis, uncertainty propagation, and estimation of parameter distribution
    Heo, Jaeseok
    Kim, Kyung Doo
    NUCLEAR ENGINEERING AND DESIGN, 2015, 292 : 237 - 247
  • [9] Modeling a production scale milk drying process: parameter estimation, uncertainty and sensitivity analysis
    Ferrari, A.
    Gutierrez, S.
    Sin, G.
    CHEMICAL ENGINEERING SCIENCE, 2016, 152 : 301 - 310
  • [10] Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R
    Kaschek, Daniel
    Mader, Wolfgang
    Fehling-Kaschek, Mirjam
    Rosenblatt, Marcus
    Timmer, Jens
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (10): : 1 - 32