Turán Number of Nonbipartite Graphs and the Product Conjecture

被引:0
|
作者
Peng, Xing [1 ]
Song, Ge [2 ]
Yuan, Long-Tu [3 ,4 ]
机构
[1] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Peoples R China
[2] Univ Sci & Technol China, Sch Publ Affairs, Hefei 230026, Anhui, Peoples R China
[3] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, 500 Dongchuan Rd, Shanghai 200240, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Turan number; Decomposition family; Matching; Star; Product conjecture; EXTREMAL GRAPHS; EXPONENTS;
D O I
10.1007/s40304-023-00375-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The decomposition family of a family of graphs often helps us to determine the error term in the well-known Erdos-Stone-Simonovits theorem. We study the Turan number of families of nonbipartite graphs such that their decomposition families contain a matching and a star. To be precisely, we prove tight bounds on the Turan number of such families of graphs. Moreover, we find a graph which is a counterexample to an old conjecture of Erdos and Simonovits, while all previous counterexamples are families of graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On the Tur■n Numbers of Linear Forests in Bipartite Graphs
    Tianying XIE
    Longtu YUAN
    Chinese Annals of Mathematics,Series B, 2024, (05) : 709 - 732
  • [32] New Turán Type Bounds for Johnson Graphs
    N. A. Dubinin
    Problems of Information Transmission, 2021, 57 : 373 - 379
  • [33] Partial product of graphs and Vizing's conjecture
    Gonzalez Yero, Ismael
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (01) : 19 - 25
  • [34] Brouwer's Conjecture for the Cartesian product of graphs
    Torres, Guilherme Simon
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 685 : 66 - 76
  • [35] A Turán-Type Problem on Distances in Graphs
    Mykhaylo Tyomkyn
    Andrew J. Uzzell
    Graphs and Combinatorics, 2013, 29 : 1927 - 1942
  • [36] Hedetniemi's Conjecture and the Retracts of a Product of Graphs
    Benoit Larose
    Claude Tardif
    Combinatorica, 2000, 20 : 531 - 544
  • [37] On the Ramsey-Turán numbers of graphs and hypergraphs
    József Balogh
    John Lenz
    Israel Journal of Mathematics, 2013, 194 : 45 - 68
  • [38] Turán-type bounds for distance graphs
    L. E. Shabanov
    A. M. Raigorodskii
    Doklady Mathematics, 2017, 96 : 351 - 353
  • [39] A class of graphs of zero Turán density in a hypercube
    Axenovich, Maria
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (03) : 404 - 410
  • [40] Generalized Turán Problems for Complete Bipartite Graphs
    Dániel Gerbner
    Balázs Patkós
    Graphs and Combinatorics, 2022, 38