Further inequalities for the Α-numerical radius of certain 2 x 2 operator matrices

被引:4
|
作者
Feki, Kais
Sahoo, Satyajit [1 ,2 ]
机构
[1] Utkal Univ, P G Dept Math, Bhubaneswar 751004, India
[2] Natl Inst Sci Educ & Res Bhubaneswar NISER, Sch Math Sci, Bhubaneswar 752050, India
关键词
Positive operator; numerical radius; operator matrix; inequality;
D O I
10.1515/gmj-2022-2204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Alpha = ( A O (O A)) be a 2 x 2 diagonal operator matrix whose each diagonal entry is a bounded positive (semi-definite) linear operator A acting on a complex Hilbert space H. In this paper, we derive several Alpha-numerical radius inequalities for 2 x 2 operator matrices whose entries are bounded with respect to the seminorm induced by the positive operator A on H. Some applications of our inequalities are also given.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 50 条
  • [31] New A-numerical Radius Equalities and Inequalities for Certain Operator Matrices and Applications
    Daptari, Soumitra
    Kittaneh, Fuad
    Sahoo, Satyajit
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [32] Numerical radius inequalities of operator matrices with applications
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09): : 1635 - 1644
  • [33] Norm and numerical radius inequalities for operator matrices
    Kittaneh, Fuad
    Moradi, Hamid Reza
    Sababheh, Mohammad
    LINEAR & MULTILINEAR ALGEBRA, 2023,
  • [34] Improved Berezin radius inequalities for certain operator matrices
    Bakherad, Mojtaba
    Kittaneh, Fuad
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3229 - 3240
  • [35] A novel numerical radius upper bounds for 2 x 2 operator matrices
    Al-Dolat, Mohammed
    Jaradat, Imad
    Al-Husban, Baraa
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1173 - 1184
  • [36] An extension of several essential numerical radius inequalities of 2x2 off-diagonal operator matrices
    Al-Dolat, Mohammed
    Jaradat, Imad
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [37] Some A-numerical radius inequalities for d x d operator matrices
    Feki, Kais
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 85 - 103
  • [38] SOME GENERAL QUADRATIC NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 x 2 BLOCK OPERATOR MATRICES
    Li, Rongfang
    Wu, Deyu
    Chen, Alatancang
    OPERATORS AND MATRICES, 2021, 15 (04): : 1427 - 1444
  • [39] Some improvements of numerical radius inequalities of operators and operator matrices
    Bhunia, Pintu
    Paul, Kallol
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10): : 1995 - 2013
  • [40] Birkhoff–James orthogonality and numerical radius inequalities of operator matrices
    Arpita Mal
    Kallol Paul
    Jeet Sen
    Monatshefte für Mathematik, 2022, 197 : 717 - 731