Predicting Colorectal Cancer Using Machine and Deep Learning Algorithms: Challenges and Opportunities

被引:15
|
作者
Alboaneen, Dabiah [1 ]
Alqarni, Razan [1 ]
Alqahtani, Sheikah [1 ]
Alrashidi, Maha [1 ]
Alhuda, Rawan [1 ]
Alyahyan, Eyman [1 ]
Alshammari, Turki [2 ,3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Comp Sci Dept, Jubail Ind City 31961, Saudi Arabia
[2] King Fahad Specialist Hosp Dammam, Dept Surg, Colorectal Surg Unit, Dammam 31444, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Med, Dammam 31441, Saudi Arabia
关键词
artificial intelligence; colorectal cancer; deep learning; early diagnosis; machine learning; FEATURES;
D O I
10.3390/bdcc7020074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the three most serious and deadly cancers in the world is colorectal cancer. The most crucial stage, like with any cancer, is early diagnosis. In the medical industry, artificial intelligence (AI) has recently made tremendous strides and showing promise for clinical applications. Machine learning (ML) and deep learning (DL) applications have recently gained popularity in the analysis of medical texts and images due to the benefits and achievements they have made in the early diagnosis of cancerous tissues and organs. In this paper, we intend to systematically review the state-of-the-art research on AI-based ML and DL techniques applied to the modeling of colorectal cancer. All research papers in the field of colorectal cancer are collected based on ML and DL techniques, and they are then classified into three categories: the aim of the prediction, the method of the prediction, and data samples. Following that, a thorough summary and a list of the studies gathered under each topic are provided. We conclude our study with a critical discussion of the challenges and opportunities in colorectal cancer prediction using ML and DL techniques by concentrating on the technical and medical points of view. Finally, we believe that our study will be helpful to scientists who are considering employing ML and DL methods to diagnose colorectal cancer.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities
    Castillo, Jose Luis Uc
    Celestino, Ana Elizabeth Marin
    Cruz, Diego Armando Martinez
    Vargas, Jose Tuxpan
    Leal, Jose Alfredo Ramos
    Ramirez, Janete Moran
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [22] Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms
    Zhou, Cheng-Mao
    Wang, Ying
    Xue, Qiong
    Yang, Jian-Jun
    Zhu, Yu
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [23] Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms
    Cheng-Mao Zhou
    Ying Wang
    Qiong Xue
    Jian-Jun Yang
    Yu Zhu
    BMC Medical Research Methodology, 23
  • [24] Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms
    Zhou, Cheng-Mao
    Wang, Ying
    Xue, Qiong
    Yang, Jian-Jun
    Zhu, Yu
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [25] Is Predicting Software Security Bugs using Deep Learning Better than the Traditional Machine Learning Algorithms?
    Clemente, Caesar Jude
    Jaafar, Fehmi
    Malik, Yasir
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2018), 2018, : 95 - 102
  • [26] Deep Learning in Predicting Preterm Birth: A Comparative Study of Machine Learning Algorithms
    Zhang Fangchao
    Tong Lingling
    Shi Chen
    Zuo Rui
    Wang Liwei
    Wang Yan
    母胎医学杂志(英文), 2024, 06 (03)
  • [27] Deep Learning in Predicting Preterm Birth: A Comparative Study of Machine Learning Algorithms
    Zhang, Fangchao
    Tong, Lingling
    Shi, Chen
    Zuo, Rui
    Wang, Liwei
    Wang, Yan
    MATERNAL-FETAL MEDICINE, 2024, 6 (03) : 141 - 146
  • [28] Predicting of Credit Risk Using Machine Learning Algorithms
    Antony, Tisa Maria
    Kumar, B. Sathish
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 99 - 114
  • [29] PREDICTING HEART DISEASE USING MACHINE LEARNING ALGORITHMS
    Berdaly, A. K.
    Abdiahmetova, Z. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2022, 115 (03): : 101 - 111
  • [30] Predicting Workplace Injuries Using Machine Learning Algorithms
    Sukumar, Divya
    Zhang, Ji
    Tao, Xiaohui
    Wang, Xin
    Zhang, Wenbin
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 763 - 764