State-of-the-Art Report: The Self-Healing Capability of Alkali-Activated Slag (AAS) Concrete

被引:31
|
作者
Hammad, Nancy [1 ]
Elnemr, Amr [1 ,2 ]
Shaaban, Ibrahim G. [3 ]
机构
[1] German Univ Cairo GUC, Civil Engn Program, Cairo 11835, Egypt
[2] Sherbrooke Univ, Civil Engn Dept, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ West London, Sch Comp & Engn, London W5 5RF, England
关键词
alkali-activated slag; self-healing; drying shrinkage; autogenous healing; autonomous healing; crack widths; CEMENTITIOUS MATERIALS; CARBONATE PRECIPITATION; COMPRESSIVE STRENGTH; DRYING SHRINKAGE; CALCIUM NITRATE; FLY-ASH; BACTERIA; COMPOSITES; PERMEABILITY; MICROENCAPSULATION;
D O I
10.3390/ma16124394
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkali-activated slag (AAS) has emerged as a potentially sustainable alternative to ordinary Portland cement (OPC) in various applications since OPC production contributed about 12% of global CO2 emissions in 2020. AAS offers great ecological advantages over OPC at some levels such as the utilization of industrial by-products and overcoming the issue of disposal, low energy consumption, and low greenhouse gas emission. Apart from these environmental benefits, the novel binder has shown enhanced resistance to high temperatures and chemical attacks. However, many studies have mentioned the risk of its considerably higher drying shrinkage and early-age cracking compared to OPC concrete. Despite the abundant research on the self-healing mechanism of OPC, limited work has been devoted to studying the self-healing behavior of AAS. Self-healing AAS is a revolutionary product that provides the solution for these drawbacks. This study is a critical review of the self-healing ability of AAS and its effect on the mechanical properties of AAS mortars. Several self-healing approaches, applications, and challenges of each mechanism are taken into account and compared regarding their impacts.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Properties and sustainability of alkali-activated slag foamed concrete
    Yang, Keun-Hyeok
    Lee, Kyung-Ho
    Song, Jin-Kyu
    Gong, Min-Ho
    JOURNAL OF CLEANER PRODUCTION, 2014, 68 : 226 - 233
  • [42] Interfacial Transition Zone of Alkali-Activated Slag Concrete
    Ji, Tao
    Gao, Qiaoling
    Zheng, Wenyuan
    Lin, Xujian
    Wu, Hwai-Chung
    ACI MATERIALS JOURNAL, 2017, 114 (03) : 347 - 354
  • [43] Shrinkage and creep behavior of an alkali-activated slag concrete
    Ma, Jianxin
    Dehn, Frank
    STRUCTURAL CONCRETE, 2017, 18 (05) : 801 - 810
  • [44] Resistance of alkali-activated slag concrete to acid attack
    Bakharev, T
    Sanjayan, JG
    Cheng, YB
    CEMENT AND CONCRETE RESEARCH, 2003, 33 (10) : 1607 - 1611
  • [45] Application of alkali-activated slag concrete in railway sleepers
    Shojaei, Mohammad
    Behfarnia, Kiachehr
    Mohebi, Reza
    MATERIALS & DESIGN, 2015, 69 : 89 - 95
  • [46] Alkali-Activated EAF Reducing Slag as Binder for Concrete
    Zhong, Wen-Huan
    Lu, Tung-Hsuan
    Huang, Wei-Hsing
    INNOVATION AND SUSTAINABLE TECHNOLOGY IN ROAD AND AIRFIELD PAVEMENT, 2013, 723 : 580 - +
  • [47] Effect of admixtures on properties of alkali-activated slag concrete
    Bakharev, T
    Sanjayan, JG
    Cheng, YB
    CEMENT AND CONCRETE RESEARCH, 2000, 30 (09) : 1367 - 1374
  • [48] Utilization of alkali-activated copper slag as binder in concrete
    Jagmeet Singh
    S. P. Singh
    Frontiers of Structural and Civil Engineering, 2021, 15 : 773 - 780
  • [49] Characterization of alkali-activated hybrid slag/cement concrete
    Amer, Ismail
    Kohail, Mohamed
    El-Feky, M. S.
    Rashad, Ahmed
    Khalaf, Mohamed A.
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (01) : 135 - 144
  • [50] Application of alkali-activated slag in roller compacted concrete
    Bastani M.
    Behfarnia K.
    International Journal of Pavement Research and Technology, 2020, 13 (03) : 324 - 333