On equivariant topological modular forms

被引:3
|
作者
Gepner, David [1 ]
Meier, Lennart [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
[2] Univ Utrecht, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
equivariant homotopy theory; elliptic cohomology; topological modular forms; orbispaces; ELLIPTIC COHOMOLOGY; HOMOTOPY-THEORY; WITTEN GENUS; K-THEORY; HOMOLOGY; FUNCTORS; THEOREM; MODELS;
D O I
10.1112/S0010437X23007509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following ideas of Lurie, we give a general construction of equivariant elliptic cohomology without restriction to characteristic zero. Specializing to the universal elliptic curve we obtain, in particular, equivariant spectra of topological modular forms. We compute the fixed points of these spectra for the circle group and more generally for tori.
引用
收藏
页码:2638 / 2693
页数:57
相关论文
共 50 条
  • [41] Equivariant movability of topological groups
    Gevorgyan, P. S.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1761 - 1766
  • [42] EQUIVARIANT TOPOLOGICAL RIGIDITY PHENOMENA
    FERRY, S
    ROSENBERG, J
    WEINBERGER, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (19): : 777 - 782
  • [43] Equivariant parametrized topological complexity
    Daundkar, Navnath
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [44] Modular Forms and Weierstrass Mock Modular Forms
    Clemm, Amanda
    MATHEMATICS, 2016, 4 (01):
  • [45] MOCK MODULAR FORMS AND QUANTUM MODULAR FORMS
    Choi, Dohoon
    Lim, Subong
    Rhoades, Robert C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2337 - 2349
  • [46] Comparison of two equivariant ?-forms
    Liu, Bo
    Ma, Xiaonan
    ADVANCES IN MATHEMATICS, 2022, 404
  • [47] Normal Forms of Equivariant Functions
    I. A. Proskurnin
    Moscow University Mathematics Bulletin, 2020, 75 : 83 - 86
  • [48] Equivariant Forms: Structure and Geometry
    Elbasraoui, Abdelkrim
    Sebbar, Abdellah
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (03): : 520 - 533
  • [49] Normal Forms of Equivariant Functions
    Proskurnin, I. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (02) : 83 - 86
  • [50] Equivariant Nonautonomous Normal Forms
    Barreira, Luis
    Valls, Claudia
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)