Federated Learning with Network Pruning and Rebirth for Remaining Useful Life Prediction of Engineering Systems

被引:3
|
作者
Chen, Xi [1 ]
Chen, Xinxian [2 ]
Wang, Hui [1 ]
Lu, Siliang [3 ]
Yan, Ruqiang [1 ,2 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, 2 Sipailou, Nanjing 210096, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, 28 Xianning West Rd, Xian 710049, Peoples R China
[3] Anhui Univ, Sch Elect Engn & Automat, 111 Jiulong Rd, Hefei 230L601, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep convolutional neural network; federated learning; network pruning; remaining useful life prediction;
D O I
10.1016/j.mfglet.2023.08.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining useful life (RUL) prediction has achieved considerable success through centralized learning methods. However, traditional data aggregation may cause privacy disclosure, and existing prediction models are often too large to be trained efficiently. This paper proposes a RUL prediction method in the federated learning (FL) framework, which aims to develop a lightweight model using network pruning and rebirth strategies. First, a deep convolutional neural network (DCNN) is designed as the prediction model. Next, the Taylor expansion and the l(2) norm pruning criteria are executed on the convolutional and fully-connected layers of DCNN to prune some unimportant feature maps and neurons, respectively. After each pruning operation, the network rebirth strategies, including model relocation, federated averaging (FedAvg), and selective retraining, are used to fine-tune the pruned model in the FL. Finally, the network pruning and rebirth occur alternately to produce a compact RUL prediction model with fewer parameters, which can achieve the same good performance as the original one. Experiments study on the C-MAPSS dataset demonstrates the effectiveness of the proposed method. (c) 2023 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
引用
收藏
页码:965 / 972
页数:8
相关论文
共 50 条
  • [41] Dual residual attention network for remaining useful life prediction of bearings
    Jiang, Guoqian
    Zhou, Wenda
    Chen, Qi
    He, Qun
    Xie, Ping
    MEASUREMENT, 2022, 199
  • [42] Multibranch Horizontal Augmentation Network for Continuous Remaining Useful Life Prediction
    Zhou, Jianghong
    Luo, Jun
    Pu, Huayan
    Qin, Yi
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (03): : 2237 - 2249
  • [43] Deep separable convolutional network for remaining useful life prediction of machinery
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Yan, Tao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 134
  • [44] Global and local information integrated network for remaining useful life prediction
    Chen, Zian
    Jin, Xiaohang
    Kong, Ziqian
    Wang, Feng
    Xu, Zhengguo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [45] Deep Recurrent Convolutional Neural Network for Remaining Useful Life Prediction
    Ma, Meng
    Mao, Zhu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [46] Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms
    Sekhar, J. N. Chandra
    Domathoti, Bullarao
    Gonzalez, Ernesto D. R. Santibanez
    SUSTAINABILITY, 2023, 15 (21)
  • [47] Prediction of the remaining useful life of a milling machine using machine learning
    Al-Refaie, Abbas
    Al-atrash, Majd
    Lepkova, Natalija
    METHODSX, 2025, 14
  • [48] Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake
    Jiang Y.
    Hu H.
    Yin Y.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2021, 55 (11): : 1408 - 1416
  • [49] Remaining Useful Battery Life Prediction for UAVs based on Machine Learning
    Mansouri, Sina Sharif
    Karvelis, Petros
    Georgoulas, George
    Nikolakopoulos, George
    IFAC PAPERSONLINE, 2017, 50 (01): : 4727 - 4732
  • [50] Deep Transfer Learning Remaining Useful Life Prediction of Different Bearings
    Xu, Juan
    Fang, Mengting
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,