Large time asymptotics for the fractional modified Korteweg-de Vries equation of order α ∈ [4,5)

被引:0
|
作者
Carreno-Bolanos, Rafael [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Tecnol Nacl Mexico, Inst Tecnol Morelia, Ave Tecnol 1500, Morelia 58089, Michoacan, Mexico
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
关键词
Fractional modified Korteweg-de Vries equation; Modified scattering; Asymptotics for large time;
D O I
10.1007/s11868-023-00536-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time asymptotics of solutions to the Cauchy problem for the fractional modified Korteweg-de Vries equation {partial derivative(t)w + 1/alpha vertical bar partial derivative(x)vertical bar(alpha-1) partial derivative(x)w = partial derivative(x) (w(3)), t > 0, x is an element of R, w (0, x) = w(0) (x), x is an element of R, where alpha is an element of [4, 5), and vertical bar partial derivative(x)vertical bar(alpha) = F-1 vertical bar xi vertical bar(alpha) F is the fractional derivative. The case of alpha = 3 corresponds to the classical modified KdV equation. In the case of alpha = 2 it is the modified Benjamin-Ono equation. Our aim is to find the large time asymptotic formulas for the solutions of the Cauchy problem for the fractional modified KdV equation. We develop the method based on the factorization techniques which was started in our previous papers. Also we apply the known results on the L-2-boundedness of pseudodifferential operators.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Bright Soliton Solutions for Time Fractional Korteweg-de Vries Equation
    Ozkan, Erdogan Mehmet
    Ozkan, Ayten
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 2325
  • [22] ENHANCED EXISTENCE TIME OF SOLUTIONS TO THE FRACTIONAL KORTEWEG-DE VRIES EQUATION
    Ehrnstrom, Mats
    Wang, Yuexun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) : 3298 - 3323
  • [23] Operator splitting for the fractional Korteweg-de Vries equation
    Dutta, Rajib
    Sarkar, Tanmay
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (06) : 3000 - 3022
  • [24] A new study on fractional Schamel Korteweg-De Vries equation and modified Liouville equation
    Koc, Dilara Altan
    Pandir, Yusuf
    Bulut, Hasan
    CHINESE JOURNAL OF PHYSICS, 2024, 92 : 124 - 142
  • [25] On the modified fractional Korteweg-de Vries and related equations
    Klein, Christian
    Saut, Jean-Claude
    Wang, Yuexun
    NONLINEARITY, 2022, 35 (03) : 1170 - 1212
  • [26] Rational Solutions with Non-zero Asymptotics of the Modified Korteweg-de Vries Equation
    Sun Ying-Ying
    Zhang Da-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (06) : 923 - 929
  • [27] New numerical solutions of fractional-order Korteweg-de Vries equation
    Inc, Mustafa
    Parto-Haghighi, Mohammad
    Akinlar, Mehmet Ali
    Chu, Yu-Ming
    RESULTS IN PHYSICS, 2020, 19
  • [28] Strongly interacting solitary waves for the fractional modified Korteweg-de Vries equation
    Eychenne, Arnaud
    Valet, Frederic
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (11)
  • [29] Rational Solutions with Non-zero Asymptotics of the Modified Korteweg-de Vries Equation
    张莹莹
    张大军
    CommunicationsinTheoreticalPhysics, 2012, 57 (06) : 923 - 929
  • [30] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313