Uncertainty-Aware Data Augmentation for Offline Reinforcement Learning

被引:0
|
作者
Su, Yunjie [1 ]
Kong, Yilun [1 ]
Wang, Xueqian [1 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
关键词
Data augmentation; Uncertainty estimation; Out of distribution; Offline reinforcement learning;
D O I
10.1109/IJCNN54540.2023.10191211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the key challenges in Offline Reinforcement Learning is that it cannot conduct further environment exploration and performs poorly in terms of out-of-distribution generalizations. Data augmentation is commonly used to solve the issue of limited coverage of the full state-action space in static offline dataset. However, the existing data augmentation methods for proprioceptive observation suffer from the dilemma where the data coverage is often limited by tight constraints, while aggressive methods may exacerbate the performance. At the heart of this phenomenon are the diverged action distribution and the high uncertainty of the value function. In this paper, we propose to extend the static offline datasets during training by adding gradient-based perturbation to the state and utilizing the estimated uncertainty of the value function to constrain the range of the gradient. The estimated uncertainty of the value function works as a guidance to adjust the range of augmentation automatically, ensuring the adaptability and reliability of the state perturbation. The proposed algorithm Uncertainty-Aware Data Augmentation(UADA), is plugged into various standard offline RL algorithms and evaluated on several offline reinforcement learning tasks. The empirical results confirm that UADA substantially improves the performance and achieves better model stability compared with the original algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Uncertainty-Aware Deep Learning Based Deformable Registration
    Grigorescu, Irina
    Uus, Alena
    Christiaens, Daan
    Cordero-Grande, Lucilio
    Hutter, Jana
    Batalle, Dafnis
    Edwards, A. David
    Hajnal, Joseph V.
    Modat, Marc
    Deprez, Maria
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 54 - 63
  • [42] Uncertainty-aware machine learning for high energy physics
    Ghosh, Aishik
    Nachman, Benjamin
    Whiteson, Daniel
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [43] Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
    Einbinder, Bat-Sheva
    Romano, Yaniv
    Sesia, Matteo
    Zhou, Yanfei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [44] Learning an Uncertainty-Aware Object Detector for Autonomous Driving
    Meyer, Gregory P.
    Thakurdesai, Niranjan
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10521 - 10527
  • [45] Learning Uncertainty-Aware Temporally-Extended Actions
    Lee, Joongkyu
    Park, Seung Joon
    Tang, Yunhao
    Oh, Min-Hwan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13391 - 13399
  • [46] Uncertainty-aware complementary label queries for active learning
    Liu, Shengyuan
    Chen, Ke
    Hu, Tianlei
    Mao, Yunqing
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2023, 24 (10) : 1497 - 1503
  • [47] Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression
    Li, Wanhua
    Huang, Xiaoke
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13891 - 13900
  • [48] Uncertainty-Aware Multi-View Representation Learning
    Geng, Yu
    Han, Zongbo
    Zhang, Changqing
    Hu, Qinghua
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7545 - 7553
  • [49] A Swapping Target Q-Value Technique for Data Augmentation in Offline Reinforcement Learning
    Joo, Ho-Taek
    Baek, In-Chang
    Kim, Kyung-Joong
    IEEE ACCESS, 2022, 10 : 57369 - 57382
  • [50] Uncertainty-aware design criteria for the classification of sensor data
    Gubian, Michele
    Marconato, Anna
    Boni, Andrea
    Petri, Dario
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (06) : 1185 - 1192