Non-negative wavelet matrix factorization-based bearing fault intelligent classification method

被引:25
|
作者
Dong, Zhilin [1 ,2 ]
Zhao, Dezun [1 ,2 ]
Cui, Lingli [1 ,2 ]
机构
[1] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
non-negative wavelet matrix factorization; convolutional neural network; rolling bearing; fault diagnosis; DIAGNOSIS;
D O I
10.1088/1361-6501/aceb0c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There are more and more bearing fault types under considering the fault location and degree, and the corresponding fault classification task is becoming increasingly heavy. Raw signals that have not been processed or simply processed are directly input into convolutional neural network (CNN) for classification, resulting in poor classification performance. Aiming at this issue, a time-frequency joint metric feature extraction technique named non-negative wavelet matrix factorization (NWMF) is developed to extract more effective features by comprehensively leveraging the advantages of continuous wavelet transform and non-negative matrix factorization. Based on the NWMF and CNN, an effective intelligent diagnosis framework is constructed to detect bearing fault. In the proposed framework, based on the NWMF, a non-negative basic matrix with smaller size is calculated from the original time-frequency spectrum and it includes bearing fault-related internal core information. In addition, a novel CNN is developed to identify locations and sizes of fault bearing based on the calculated internal core information. For verifying the effectiveness of the proposed framework in handling heavier tasks, the types of bearing faults in the experiments are set up to 15, the results and comparative analysis reveal that the feasibility and superiority of the proposed method are much better than the other traditional machine learning methods and original deep learning methods, such as the support vector machine, random forest and residual neural network.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Face recognition using wavelet transform and non-negative matrix factorization
    Foon, NH
    Jin, ATB
    Ling, DNC
    AI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3339 : 192 - 202
  • [32] Engine fault diagnosis utilizing adaptive morphological lifting wavelet and improved non-negative matrix factorization
    Li, B. (rommandy@163.com), 1600, China Ordnance Industry Corporation (34):
  • [33] Direct Classification of GC x GC-Analyzed Complex Mixtures Using Non-Negative Matrix Factorization-Based Feature Extraction
    Zushi, Yasuyuki
    Hashimoto, Shunji
    ANALYTICAL CHEMISTRY, 2018, 90 (06) : 3819 - 3825
  • [34] Matrix transformation based non-negative matrix factorization algorithm
    Li, Fang
    Zhu, Qun-Xiong
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2010, 33 (04): : 118 - 120
  • [35] A framework for intelligent Twitter data analysis with non-negative matrix factorization
    Casalino, Gabriella
    Castiello, Ciro
    Del Buono, Nicoletta
    Mencar, Corrado
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2018, 14 (03) : 334 - 356
  • [36] Speaker Clustering Based on Non-negative Matrix Factorization
    Nishida, Masafumi
    Yamamoto, Seiichi
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 956 - 959
  • [37] Image fusion based on non-negative matrix factorization
    Zhang, JY
    Wei, L
    Miao, QG
    Wang, Y
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 973 - 976
  • [38] Blind Extraction of Correlated Fault Sources Based on Constrained Non-Negative Matrix Factorization
    Li, Ning
    Chen, Hai Ting
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 760 - 764
  • [39] IMAGE PREDICTION BASED ON NON-NEGATIVE MATRIX FACTORIZATION
    Turkan, Mehmet
    Guillemot, Christine
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 789 - 792
  • [40] Link prediction based on non-negative matrix factorization
    Chen, Bolun
    Li, Fenfen
    Chen, Senbo
    Hu, Ronglin
    Chen, Ling
    PLOS ONE, 2017, 12 (08):