Multiattention Joint Convolution Feature Representation With Lightweight Transformer for Hyperspectral Image Classification

被引:28
|
作者
Fang, Yu [1 ]
Ye, Qiaolin [2 ]
Sun, Le [1 ,3 ]
Zheng, Yuhui [1 ]
Wu, Zebin [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Sch Informat Sci & Technol, Nanjing 210037, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross attention mechanisms; hyperspectral image (HSI) classification; multiattention; multifeature; transformer; RANDOM FOREST; FRAMEWORK; NETWORK;
D O I
10.1109/TGRS.2023.3281511
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) classification is currently a hot topic in the field of remote sensing. The goal is to utilize the spectral and spatial information from HSI to accurately identify land covers. Convolution neural network (CNN) is a powerful approach for HSI classification. However, CNN has limited ability to capture nonlocal information to represent complex features. Recently, vision transformers (ViTs) have gained attention due to their ability to process non-local information. Yet, under the HSI classification scenario with ultrasmall sample rates, the spectral-spatial information given to ViTs for global modeling is insufficient, resulting in limited classification capability. Therefore, in this article, multiattention joint convolution feature representation with lightweight transformer (MAR-LWFormer) is proposed, which effectively combines the spectral and spatial features of HSI to achieve efficient classification performance at ultrasmall sample rates. Specifically, we use a three-branch network architecture to extract multiscale convolved 3D-CNN, extended morphological attribute profile (EMAP), and local binary pattern (LBP) features of HSI, respectively, by taking full exploitation of ultrasmall training samples. Second, we design a series of multiattention modules to enhance spectral-spatial representation for the three types of features and to improve the coupling and fusion of multiple features. Third, we propose an explicit feature attention tokenizer (EFA-tokenizer) to transform the feature information, which maximizes the effective spectral-spatial information retained in the flat tokens. Finally, the generated tokens are input to the designed lightweight transformer for encoding and classification. Experimental results on three datasets validate that MAR-LWFormer has an excellent performance in HSI classification at ultrasmall sample rates when compared to several state-of-the-art classifiers.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Lightweight Convolution Network with Self-Knowledge Distillation for Hyperspectral Image Classification
    Xu, Hao
    Cao, Guo
    Deng, Lindiao
    Ding, Lanwei
    Xu, Ling
    Pan, Qikun
    Shang, Yanfeng
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [32] Guided Random Projection: A Lightweight Feature Representation for Image Classification
    Zhou, Shichao
    Wang, Junbo
    Wang, Wenzheng
    Tang, Linbo
    Zhao, Baojun
    IEEE ACCESS, 2021, 9 : 129110 - 129118
  • [33] HyperSINet: A Synergetic Interaction Network Combined With Convolution and Transformer for Hyperspectral Image Classification
    Yu, Qixing
    Wei, Weibo
    Li, Dantong
    Pan, Zhenkuan
    Li, Chenyu
    Hong, Danfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [34] DBCTNet: Double Branch Convolution-Transformer Network for Hyperspectral Image Classification
    Xu, Rui
    Dong, Xue-Mei
    Li, Weijie
    Peng, Jiangtao
    Sun, Weiwei
    Xu, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [35] Joint Collaborative Representation With Multitask Learning for Hyperspectral Image Classification
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    Huang, Xin
    Zhang, Lefei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5923 - 5936
  • [36] Fast Multifeature Joint Sparse Representation for Hyperspectral Image Classification
    Zhang, Erlei
    Zhang, Xiangrong
    Liu, Hongying
    Jiao, Licheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (07) : 1397 - 1401
  • [37] Weighted Kernel joint sparse representation for hyperspectral image classification
    Hu, Sixiu
    Xu, Chunhua
    Peng, Jiangtao
    Xu, Yan
    Tian, Long
    IET IMAGE PROCESSING, 2019, 13 (02) : 254 - 260
  • [38] Nuclear Norm Joint Sparse Representation for Hyperspectral Image Classification
    Tao, Yingshan
    Yuan, Haoliang
    Lai, Loi Lei
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5443 - 5447
  • [39] Nearest Regularized Joint Sparse Representation for Hyperspectral Image Classification
    Chen, Chen
    Chen, Na
    Peng, Jiangtao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 424 - 428
  • [40] Kernel Weighted Joint Collaborative Representation for Hyperspectral Image Classification
    Du, Qian
    Li, Wei
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XI, 2015, 9501