Microstructure characterization and mechanical performance of laser powder bed fusion processed AlMgScZr alloy: Effect of heat treatment

被引:8
|
作者
Li, Xiang [1 ,2 ]
Liu, Yunzhong [1 ,2 ]
机构
[1] South China Univ Technol, Guangdong Prov Key Lab Proc & Forming Adv Met Mat, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Natl Engn Res Ctr Near net shape Forming Met Mat, Guangzhou 510640, Peoples R China
关键词
Laser powder bed fusion; Additive manufacturing; AlMgScZr; Heat treatment; Microstructure; Mechanical properties; STRENGTHENING MECHANISMS; PRECIPITATION KINETICS; GRAIN-REFINEMENT; ALUMINUM-ALLOYS; SC; SCANDIUM; PARTICLES; TEXTURE; AMBIENT;
D O I
10.1016/j.msea.2022.144501
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser powder bed fusion (LPBF) of aluminum alloys produces a particularly unique microstructure compared to conventional casting and forging products. Generally, the heat treatments employed in traditional fabrication techniques may not be suitable for LPBF. To mitigate this dilemma, this work systematically investigated the hardening behavior of various heat-treated temperatures and hold durations carried out on LPBF fabricated AlMgScZr alloy. The microstructure and mechanical performance in the as-built and heat-treated conditions were also compared and discussed. Results demonstrate that the resultant static mechanical performance is exceptionally excellent with ultimate tensile strength (UTS) exceeding 550 MPa along with a sound fracture elongation even after heat treatment. These outstanding properties are strongly related to the fine equiaxed grains microstructure and a high fraction of secondary Al-3(Sc, Zr) precipitations. Importantly, these fine equiaxed grains almost maintained ungrowth even after heat treatment owing to the pinning effect of secondary Al-3(Sc, Zr) precipitations. This AlMgScZr alloy demonstrates high tensile strength and appreciable ductility due to fine grain strengthening, solid solution strengthening and secondary phase strengthening. As such, by the synergetic effects of Sc and Zr microalloying and optimal heat treatment conditions, the high strength and decent ductility of LPBF fabricated AlMgScZr alloy can be achieved, extending its further application in aerospace industry. This strategy can also be employed to other LPBF fabricated engineering materials, providing a foundation for expanding industrial applications of LPBF fabricated parts.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Effect of heat treatment on the microstructure, mechanical properties and tribological behavior of Ti-45Nb alloy fabricated by laser powder bed fusion
    Wang, Pei
    Zhou, Manman
    Ramasamy, Parthiban
    Tan, Jia
    Deng, Liang
    Yang, Lei
    Kang, Nan
    El Mansori, Mohamed
    Eckert, Juergen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 7070 - 7082
  • [22] Microstructure and mechanical properties of AlTiCrFe and AlTiCrCu alloys processed by Laser Powder Bed Fusion
    Monti, Chiara
    Turani, Matteo
    Wierschke, Sebastian
    Papis, Konrad
    Bambach, Markus
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 892
  • [23] The Effect of Laser Post-Heat Treatment of Laser Powder Bed Fusion High Nitrogen Steel on the Microstructure and Mechanical Properties
    Fu, Jiazhe
    Liu, Jie
    Zhong, Sheng
    Li, Tiannan
    Zhang, Peng
    Xing, Ying
    Liang, Yanwen
    Guo, Shun
    Wang, Kehong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [24] Effect of heat treatment on mechanical and corrosion properties of an Al0.8CrFe2Ni2 alloy processed by laser powder bed fusion
    Vogiatzief, D.
    Evirgen, A.
    Pedersen, M.
    Czerski, J.
    Mitoraj-Krolikowska, M.
    Godlewska, E.
    Eshed, E.
    Hecht, U.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 953
  • [25] Effect of Heat Treatment on Microstructure and Mechanical Properties of K418 Superalloy Prepared by Laser Powder Bed Fusion
    Wei, Pei
    Chen, Yi
    Chen, Zhen
    Yao, Sen
    Huang, Xiaoyong
    Li, Min
    Wang, Jiajian
    Lu, Bingheng
    ADVANCED ENGINEERING MATERIALS, 2025,
  • [26] Effect of solution heat treatment on microstructure, mechanical and electrochemical properties of hastelloy X fabricated by laser powder bed fusion
    Li, Chenxin
    Liu, Yong
    Shu, Tong
    Guan, Wenchao
    Wang, Shenghai
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 1499 - 1512
  • [27] Effects of powder reuse on the microstructure and mechanical behaviour of Al–Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF)
    Cordova, Laura
    Bor, Ton
    de Smit, Marc
    Carmignato, Simone
    Campos, Mónica
    Tinga, Tiedo
    Additive Manufacturing, 2020, 36
  • [28] Effect of high-temperature heat treatment on mechanical properties and microstructure of CoCrNi medium-entropy alloy formed by laser powder bed fusion
    Yang, Laixia
    Yang, Mengjia
    Zhang, Yanze
    Xie, Qidong
    Zhang, Longbo
    Chen, Zhen
    Su, Hang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 491 - 503
  • [29] Effect of heat treatment on microstructural evolution and mechanical properties of eutectic Al-6Mg2Si alloy processed by laser powder bed fusion
    Wen, Tao
    Wang, Jianying
    Yang, Feipeng
    Zhu, Mengzhen
    Luo, Yimou
    Liu, Zhilin
    Dong, Xixi
    Yang, Hailin
    Ji, Shouxun
    MATERIALS CHARACTERIZATION, 2025, 220
  • [30] Effect of Fe and C Contents on the Microstructure and High-Temperature Mechanical Properties of IN625 Alloy Processed by Laser Powder Bed Fusion
    Kreitcberg, Alena
    Brailovski, Vladimir
    MATERIALS, 2022, 15 (19)