On integrability of the deformed Ruijs']jsenaars-Schneider system

被引:0
|
作者
Zabrodin, A. V. [1 ]
机构
[1] Natl Res Univ, Skolkovo Inst Sci & Technol, Higher Sch Econ, Natl Res Ctr,Kurchatov Inst, Moscow, Russia
关键词
Rui[!text type='js']js[!/text]enaars-Schneider system; integrable systems; integrals of motion; discrete time; KADOMTSEV-PETVIASHVILI EQUATION; ELLIPTIC SOLUTIONS; HAMILTONIAN SYSTEMS; TRANSFORMATION; HIERARCHY; FAMILIES;
D O I
10.4213/rm10105e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find integrals of motion for the recently introduced deformed Ruijsenaars-Schneider many-body system, which is the dynamical system for poles of elliptic solutions to the Toda lattice with constraint of type B. Our method is based on the fact that the equations of motion for this system coincide with those for pairs of Ruijsenaars-Schneider particles which stick together preserving a special fixed distance between the particles. We also obtain B<spacing diaeresis>acklund transformations and integrable time discretization of the deformed Ruijsenaars-Schneider system, which is shown to be the dynamical system for poles of elliptic solutions to the fully discrete Kadomtsev-Petviashvili equation of type B. In additon, we propose a field analogue of the deformed Ruijsenaars-Schneider system on a space-time lattice.
引用
收藏
页码:349 / 386
页数:38
相关论文
共 50 条
  • [41] On Ruijs']jsenaars-Schneider spectrum from superconformal indices and ramified instantons
    Kim, Hee-Cheol
    Nedelin, Anton
    Razamat, Shlomo S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):
  • [42] Hyperbolic Spin Ruijs']jsenaars-Schneider Model from Poisson Reduction
    Arutyunov, Gleb E.
    Olivucci, Enrico
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (01) : 31 - 45
  • [43] On the Hamiltonian form of equations of the elliptic spin Ruijs']jsenaars-Schneider model
    Soloviev, F. L.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (06) : 1142 - 1144
  • [44] Quantum trace formulae for the integrals of the hyperbolic Ruijs']jsenaars-Schneider model
    Arutyunov, Gleb
    Klabbers, Rob
    Olivucci, Enrico
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [45] C(2)N+1 Ruijs']jsenaars-Schneider models
    Avan, J
    Rollet, G
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 60 (02) : 177 - 189
  • [46] On the duality between the hyperbolic Sutherland and the rational Ruijs']jsenaars-Schneider models
    Feher, L.
    Klimcik, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (18)
  • [47] R-matrix quantization of the elliptic Ruijs']jsenaars-Schneider model
    Arutyunov, GE
    Chekhov, LO
    Frolov, SA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) : 405 - 432
  • [48] Ruijs']jsenaars-Schneider three-body models with N=2 supersymmetry
    Galajinsky, Anton
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [49] SUPERINTEGRABILITY OF RATIONAL RUIJS']JSENAARS-SCHNEIDER SYSTEMS AND THEIR ACTION-ANGLE DUALS
    Ayadi, Viktor
    Feher, Laszlo
    Gorbe, Tamas F.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2012, 27 : 27 - 44
  • [50] Lax pairs and involutive Hamiltonians for CN and BCN Ruijs']jsenaars-Schneider models
    Chen, K
    Hou, Y
    Yang, WL
    INTEGRABLE QUANTUM FIELD THEORIES AND THEIR APPLICATIONS, 2001, : 35 - 54