Phase change heat transfer in a vertical metal foam-phase change material thermal energy storage heat dissipator

被引:6
|
作者
Ghalambaz, Mehdi [1 ]
Mehryan, S. A. M. [2 ]
Ramezani, Sayed Reza [3 ]
Hajjar, Ahmad [4 ]
El Kadri, Mohamad [5 ]
Islam, Mohamamd S. [6 ]
Younis, Obai [7 ,8 ]
Ghodrat, Maryam [9 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Islamic Azad Univ, Yasooj Branch, Young Researchers & Elite Club, Yasuj, Iran
[3] KN Toosi Univ Technol, Dept Mech Engn, Tehran, Iran
[4] Univ Lyon, ECAM Lyon, LabECAM, Lyon, France
[5] Ctr Sci & Tech Batiment, Champs Sur Marne, France
[6] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Mech & Mechatron Engn, Ultimo, NSW 2007, Australia
[7] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Addwasir, Dept Mech Engn, Al Kharj 11942, Saudi Arabia
[8] Univ Khartoum, Fac Engn, Dept Mech Engn, Khartoum, Sudan
[9] Univ New South Wales Canberra, Sch Engn & Informat Technol, Canberra, ACT 2610, Australia
关键词
Phase change material heat dissipator; Melting and solidification; Metal foams; Natural convection; MHD NATURAL-CONVECTION; SQUARE POROUS CAVITY; LI-ION BATTERY; NUMERICAL-SIMULATION; NANOFLUID; MANAGEMENT; PERFORMANCE; ENCLOSURE; PARAFFIN; TEMPERATURE;
D O I
10.1016/j.est.2023.107370
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A metallic foam heat dissipator for cooling electronic components was addressed. A heat dissipator is a parti-tioned aluminum container loaded along with aluminum metallic foam and saturated with paraffin wax. A heat flux at a surface contains a basic uniform flux and the step transient raise, which should be managed by a heat dissipator and a Phase Change Material (PCM). The regulating equations for a melting/solidification transfer of heat & momentum transport in a heat dissipator were instituted into a structure of partial differential equations. Then, the vital monitoring equations were converted into a general dimensionless type and solved by the Finite Element Method. A mesh adjustment technique & automated time-step control was employed to control the accuracy & convergence of the result automatically. An adaptation technique controls the mesh resolution at the melting/solidification interface. The dimensionless temperature of fusion is a vital factor in the control of the surface temperature and heat dissipator efficiency. Considering a fixed amount of material for walls, a heat dissipator with thick sidewalls and thin top and bottom walls results in slightly better thermal performance. Using a PCM heat sink could reduce the heated surface temperature by >175 % during the pulse load.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam
    Zhang, P.
    Meng, Z. N.
    Zhu, H.
    Wang, Y. L.
    Peng, S. P.
    APPLIED ENERGY, 2017, 185 : 1971 - 1983
  • [32] Heat transfer study of metal foam with partial filling method to strengthen phase change material
    Chen, Wenmin
    Wang, Hui
    Ying, Qifan
    Diao, Yongfa
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2024, 165 : 245 - 256
  • [33] Heat transfer performance and structural optimization design method of vertical phase change thermal energy storage device
    Chen, Chao
    Liang, Lu
    Zhang, Ye
    Chen, Ziguang
    Xie, Guangya
    ENERGY AND BUILDINGS, 2014, 68 : 679 - 685
  • [34] Experimental Study on the Thermal Performance of a Finned Metal Foam Heat Sink with Phase Change Material
    Huang, Yongping
    Sun, Qing
    Yao, Feng
    Zhang, Chengbin
    HEAT TRANSFER ENGINEERING, 2021, 42 (07) : 579 - 591
  • [35] Passive thermal management using metal foam saturated with phase change material in a heat sink
    Qu, Z. G.
    Li, W. Q.
    Wang, J. L.
    Tao, W. Q.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (10) : 1546 - 1549
  • [36] On Numerical Modeling of Thermal Performance Enhancementof a Heat Thermal Energy Storage System Using a Phase Change Material and a Porous Foam
    Mabrouk, Riheb
    Naji, Hassane
    Dhahri, Hacen
    Younsi, Zouhir
    COMPUTATION, 2022, 10 (01)
  • [37] High heat transfer performance of foam freezing in phase change cold energy storage process
    Ding, Zhaolei
    Jiang, Zhaoliang
    Wang, Jiamin
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [38] Investigation on latent heat energy storage using phase change material enhanced by gradient-porosity metal foam
    Shen, Shixuan
    Zhou, Haowei
    Du, Yurou
    Huo, Yutao
    Rao, Zhonghao
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [39] Effect of gravity and metal foam on melting of phase change material in a vertical shell and tube heat exchanger
    Mali, S.
    Narayanamurthy, S.
    Sengupta, S.
    TURBULENCE HEAT AND MASS TRANSFER 9 (THMT-18), 2018, : 971 - 980
  • [40] Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems
    Ettouney, HM
    Alatiqi, I
    Al-Sahali, M
    Al-Ali, SA
    RENEWABLE ENERGY, 2004, 29 (06) : 841 - 860