共 50 条
Fundamentals of Crystalline Evolution and Properties of Carbon Nanotube-Reinforced Polyether Ether Ketone Nanocomposites in Fused Filament Fabrication
被引:5
|作者:
Carrola, Mia
[1
]
Fallahi, Hamed
[2
]
Koerner, Hilmar
[3
]
Perez, Lisa M.
[4
]
Asadi, Amir
[1
,2
]
机构:
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mech Engn, Dept Engn Technol & Ind Distribut, College Stn, TX 77843 USA
[3] WPAFB, Res Lab, Mat & Mfg Directorate, Dayton, OH 45430 USA
[4] Texas A&M Univ, High Performance Res Comp, College Stn, TX 77843 USA
基金:
美国国家科学基金会;
关键词:
polyetheretherketone;
nanocomposites;
carbon nanotubes;
fused filament fabrication;
cold crystallization;
MOLECULAR-DYNAMICS;
COLD CRYSTALLIZATION;
PEEK;
KINETICS;
SIMULATION;
BEHAVIOR;
SURFACE;
D O I:
10.1021/acsami.3c01307
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
As fused filament fabrication (FFF) continues to gain popularity, many studies are turning to nanomaterials or optimization of printing parameters to improve the materials' properties; however, many overlook how materials formulation and additive manufacturing (AM) processes cooperatively engineer the evolution of properties across length scales. Evaluating the in-process evolution of the nanocomposite using AM will provide a fundamental understanding of the material's microstructure, which can be tailored to create unique characteristics in functionality and performance. In this study, the crystallinity behavior of polyetheretherketone (PEEK) was studied in the presence of carbon nanotubes (CNTs) as a nucleation aid for improved crystallization during FFF processing. Using various characterization techniques and molecular dynamics simulations, it was discovered that the crystallization behavior of extruded filaments is very different from that of 3D printed roads. Additionally, the printed material exhibited cold crystallization, and the CNT addition increased the crystallization of printed roads, which were amorphous without CNT addition. Tensile strength and modulus were increased by as much as 42 and 51%, respectively, due to higher crystallinity during printing. Detailed knowledge on the morphology of PEEK-CNT used in FFF allows gaining a fundamental understanding of the morphological evolution occurring during the AM process that in turn enables formulating materials for the AM process to achieve tailored mechanical and functional properties, such as crystallinity or conductivity.
引用
收藏
页码:22506 / 22523
页数:18
相关论文