Stability and bifurcations of symmetric tops

被引:0
|
作者
Lerman, Eugene [1 ]
机构
[1] Univ Illinois, Math Dept, 1409 W Green St, Urbana, IL 61801 USA
关键词
Bifurcation; stability; finite-dimensional Hamiltonian systems; PHASE-SPACE; INVARIANT; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability and bifurcation of relative equiibria of a particle on the Lie group SO(3) whose motion is governed by an SO(3) x SO(2) invariant metric and an SO(2) x SO(2) in-variant potential. Our method is to reduce the number of degrees of freedom at singular values of the SO(2) x SO(2) momentum map and study the stability of the equilibria of the reduced systems as a function of spin. The result is an elementary analysis of the fast/slow transition in the Lagrange and Kirchhoff tops. More generally, since an SO(2) x SO(2) invariant potential on SO(3) can be thought of as Z2 invariant function on a circle, we analyze the stability and bifurcation of relative equilibria of the system in terms of the second and fourth derivative of the function.
引用
收藏
页码:2037 / 2065
页数:29
相关论文
共 50 条
  • [21] Bifurcations in the transonic flow past a symmetric airfoil
    A. G. Kuz’min
    Fluid Dynamics, 2006, 41 : 629 - 632
  • [22] Bifurcations in thin spherically symmetric radiating shells
    Aquilano, RO
    Castagnino, MA
    Lara, LP
    MODERN PHYSICS LETTERS A, 1996, 11 (14) : 1115 - 1119
  • [23] Stable and non-symmetric pitchfork bifurcations
    Enrique Pujals
    Michael Shub
    Yun Yang
    Science China Mathematics, 2020, 63 : 1837 - 1852
  • [24] Bimodal bifurcations of equilibria in symmetric potential systems
    A. P. Seyranian
    A. A. Mailybaev
    Doklady Physics, 2007, 52 : 600 - 606
  • [25] Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps
    Pelinovsky, Dmitry E.
    Kevrekidis, Panayotis G.
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, (01) : 127 - 164
  • [26] Stable and non-symmetric pitchfork bifurcations
    Pujals, Enrique
    Shub, Michael
    Yang, Yun
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (09) : 1837 - 1852
  • [27] Bifurcations in the symmetric viability model with weak selection
    Li, Yingtao
    Zhang, Weinian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 329 : 131 - 205
  • [28] Bimodal bifurcations of equilibria in symmetric potential systems
    Seyranian, A. P.
    Mailybaev, A. A.
    DOKLADY PHYSICS, 2007, 52 (11) : 600 - 606
  • [29] BIFURCATIONS AND STABILITY OF FAMILIES OF DIFFEOMORPHISMS
    NEWHOUSE, S
    PALIS, J
    TAKENS, F
    PUBLICATIONS MATHEMATIQUES, 1983, (57): : 5 - 71
  • [30] Stability of singular Hopf bifurcations
    Yang, LJ
    Zeng, XW
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (01) : 30 - 54