Stability and bifurcations of symmetric tops

被引:0
|
作者
Lerman, Eugene [1 ]
机构
[1] Univ Illinois, Math Dept, 1409 W Green St, Urbana, IL 61801 USA
关键词
Bifurcation; stability; finite-dimensional Hamiltonian systems; PHASE-SPACE; INVARIANT; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability and bifurcation of relative equiibria of a particle on the Lie group SO(3) whose motion is governed by an SO(3) x SO(2) invariant metric and an SO(2) x SO(2) in-variant potential. Our method is to reduce the number of degrees of freedom at singular values of the SO(2) x SO(2) momentum map and study the stability of the equilibria of the reduced systems as a function of spin. The result is an elementary analysis of the fast/slow transition in the Lagrange and Kirchhoff tops. More generally, since an SO(2) x SO(2) invariant potential on SO(3) can be thought of as Z2 invariant function on a circle, we analyze the stability and bifurcation of relative equilibria of the system in terms of the second and fourth derivative of the function.
引用
收藏
页码:2037 / 2065
页数:29
相关论文
共 50 条
  • [1] NONLINEAR STABILITY AND BIFURCATIONS OF SYMMETRIC HEAVY GYROSCOPE
    Zhu Ruzeng (Institute of Mechanics
    Acta Mechanica Sinica, 1990, (02) : 180 - 187
  • [2] Stability, attractors, and bifurcations of the A2 symmetric flow
    Gonzalez-Miranda, J. M.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (03) : 341 - 350
  • [3] Internal rotation in symmetric tops
    Ozier, I.
    Moazzen-Ahmadi, N.
    ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS, VOL 54, 2007, 54 : 423 - 509
  • [4] Rovibrational spectra of symmetric tops
    NATO Advanced Study Institutes Series, Series B: Physics, 1992, 301
  • [5] BIFURCATIONS IN SYMMETRIC SYSTEMS
    HENRARD, J
    MEYER, KR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A350 - A350
  • [6] Heavy symmetric tops and the Hannay angle
    Park, Changsoo
    AMERICAN JOURNAL OF PHYSICS, 2023, 91 (05) : 357 - 365
  • [7] AVERAGING AND BIFURCATIONS IN SYMMETRIC SYSTEMS
    HENRARD, J
    MEYER, KR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) : 133 - 145
  • [8] On Bifurcations of Symmetric Elliptic Orbits
    Marina S. Gonchenko
    Regular and Chaotic Dynamics, 2024, 29 : 25 - 39
  • [9] On Bifurcations of Symmetric Elliptic Orbits
    Gonchenko, Marina S.
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (01): : 25 - 39
  • [10] PT-SYMMETRIC DOUBLE-WELL POTENTIALS REVISITED: BIFURCATIONS, STABILITY AND DYNAMICS
    Rodrigues, A. S.
    Li, K.
    Achilleos, V.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Bender, C. M.
    ROMANIAN REPORTS IN PHYSICS, 2013, 65 (01) : 5 - 26