New asymptotic lower bound for the radius of analyticity of solutions to nonlinear Schrodinger equation

被引:2
|
作者
Getachew, Tegegne [1 ]
Belayneh, Birilew [1 ]
机构
[1] Bahir Dar Univ, Dept Math, Bahir Dar, Ethiopia
关键词
Defocusing NLS equation; modified Gevrey spaces; local smoothing effect; maximal function estimate; lower bound; radius of analyticity; SPATIAL ANALYTICITY; ROUGH SOLUTIONS; CAUCHY-PROBLEM;
D O I
10.1142/S0219530524500039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the radius of analyticity sigma(t) of solutions to the one-dimensional nonlinear Schr odinger (NLS) equationi partial derivative tu+partial derivative 2xu=|u|p-1u is bounded from below by c|t|-23 when p>3 and by c|t|-45 when p=3 as |t|->+infinity, given initial data that is analytic with fixed radius. This improves results obtained byTesfahun [On the radius of spatial analyticity for cubic nonlinear Schr odinger equations,J. Differential Equations263(11) (2017) 7496-7512] forp=3andAhnet al.[Onthe radius of spatial analyticity for defocusing nonlinear Schrodinger equations,Discrete Contin. Dyn. Syst.40(1) (2020) 423-439] for any odd integersp>3, where theyobtained a decay rate sigma(t)>= c|t|-1for largert. The proof of our main theorems is based on a modified Gevrey space introduced in [T. T. Dufera, S. Mebrate and A. Tesfahun, On the persistence of spatial analyticity for the beam equation,J. Math. Anal. Appl.509(2) (2022) 126001], the local smoothing effect, maximal function estimate of theSchr odinger propagator, a method of almost conservation law, Schr odinger admissibility and one-dimensional Sobolev embedding
引用
收藏
页码:815 / 832
页数:18
相关论文
共 50 条
  • [31] ASYMPTOTIC SOLUTIONS AND CONSERVATION LAWS FOR NONLINEAR SCHRODINGER EQUATION .2.
    SEGUR, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) : 714 - 716
  • [32] Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrodinger equation
    Yamane, Hideshi
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (05) : 1077 - 1083
  • [33] ASYMPTOTIC SOLUTIONS AND CONSERVATION LAWS FOR NONLINEAR SCHRODINGER EQUATION .1.
    SEGUR, H
    ABLOWITZ, MJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) : 710 - 713
  • [34] LOWER BOUNDS ON THE RADIUS OF SPATIAL ANALYTICITY FOR THE HIGHER ORDER NONLINEAR DISPERSIVE EQUATION ON THE REAL LINE
    Zhang, Zaiyun
    Liu, Zhenhai
    Deng, Youjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (02): : 937 - 970
  • [35] New solutions for perturbed chiral nonlinear Schrodinger equation
    Aly, E. S.
    Abdelrahman, Mahmoud A. E.
    Bourazza, S.
    Ahmadini, Abdullah Ali H.
    Msmali, Ahmed Hussein
    Askar, Nadia A.
    AIMS MATHEMATICS, 2022, 7 (07): : 12289 - 12302
  • [36] Generalized and new solutions of the NRT nonlinear Schrodinger equation
    Gordoa, P. R.
    Pickering, A.
    Puertas-Centeno, D.
    Toranzo, E. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [37] New analytical solutions to the nonlinear Schrodinger equation model
    Zhang, YY
    Zheng, Y
    Zhang, HQ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (11-12): : 775 - 782
  • [38] A new class of solutions to a generalized nonlinear Schrodinger equation
    Hood, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (48): : 9715 - 9727
  • [39] New type of solutions for the nonlinear Schrodinger equation in RN
    Duan, Lipeng
    Musso, Monica
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 479 - 504
  • [40] New solutions for the generalized resonant nonlinear Schrodinger equation
    Nisar, Kottakkaran Sooppy
    Ali, Khalid K.
    Inc, Mustafa
    Mehanna, M. S.
    Rezazadeh, Hadi
    Akinyemi, Lanre
    RESULTS IN PHYSICS, 2022, 33