Additive Manufacturing of High-Temperature Preceramic-Derived SiOC Hybrid Functional Ceramics

被引:2
|
作者
Li, Zheng [1 ,2 ]
Khuje, Saurabh [1 ,2 ]
Islam, Abdullah [1 ,2 ]
Ren, Shenqiang [1 ,2 ,3 ,4 ]
机构
[1] Univ Buffalo State Univ New York, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] Univ Maryland, Dept Mat Sci & Sci, College Pk, MD 20742 USA
[3] Univ Buffalo State Univ New York, Dept Chem, Bu?alo, NY 14260 USA
[4] Univ Buffalo State Univ New York, Res & Educ Energy Environm & Water Inst, Buffalo, NY 14260 USA
关键词
additive manufacturing; copper; high temperatures; preceramic materials; silicon oxycarbides; ATOMIC LAYER DEPOSITION; OXIDATION RESISTANCE; THIN-FILMS; COPPER; CONDUCTIVITY; AL2O3; TIO2; STABILITY; COATINGS; BEHAVIOR;
D O I
10.1002/adem.202300957
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-temperature capable materials, metals, and ceramics are attracting significant interest for applications in extreme environmental conditions. Herein, a hybrid metal-reinforced ceramic matrix material consisting of preceramic-derived high-temperature SiOC and copper nanoplates is reported, enabling the manufacturing of high-temperature sensing electronics. The preceramic polymer precursors including polydimethylsiloxane and polydimethylsilane, together with copper nanoplates, are thermally converted into durable copper-reinforced SiOC ceramics. The presence of copper in SiOC ceramics enhances its electrical conductivity, while SiOC suppresses oxygen uptake and acts as a shield for oxidation to achieve high-temperature thermal resistance and negative temperature coefficient at high temperatures. A comprehensive electric and sensing performance, combined with cost-effectiveness and scalability, can facilitate the utilization of hybrid Cu and SiOC composites in high-temperature electronics. High-temperature metal-ceramic matrix composites are additively manufactured using the preceramic polymer precursor and copper nanofiller, for the development of extreme environment electronics.image & COPY; 2023 WILEY-VCH GmbH
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Competence in high-temperature ceramics
    不详
    CFI-CERAMIC FORUM INTERNATIONAL, 2002, 79 (11): : E25 - E26
  • [42] HIGH-TEMPERATURE SUPERCONDUCTING CERAMICS
    EAGLESHAM, DJ
    HUMPHREYS, CJ
    ALFORD, NM
    CLEGG, WJ
    HARMER, MA
    BIRCHALL, JD
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1988, 1 (3-4): : 229 - 235
  • [43] HIGH-TEMPERATURE STRUCTURAL CERAMICS
    KATZ, RN
    SCIENCE, 1980, 208 (4446) : 841 - 847
  • [44] HIGH-TEMPERATURE TRIBOLOGY OF CERAMICS
    WOYDT, M
    HABIG, KH
    TRIBOLOGY INTERNATIONAL, 1989, 22 (02) : 75 - 88
  • [45] DESIGNING WITH HIGH-TEMPERATURE CERAMICS
    PALUSZNY, A
    MECHANICAL ENGINEERING, 1975, 97 (07) : 97 - 97
  • [46] A HIGH-TEMPERATURE FURNACE FOR CERAMICS
    ELASSAL, K
    KINDL, B
    ADVANCED MATERIALS & PROCESSES, 1986, 130 (05): : 8 - 10
  • [47] High-temperature creep in ceramics
    V. S. Bakunov
    Refractories and Industrial Ceramics, 1997, 38 : 449 - 452
  • [48] CERAMICS FOR HIGH-TEMPERATURE APPLICATIONS
    MOCELLIN, A
    REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, 1977, 14 (01): : 46 - 55
  • [49] Polymer-Derived SiOC/ZrO2 Ceramic Nanocomposites with Excellent High-Temperature Stability
    Ionescu, Emanuel
    Linck, Christoph
    Fasel, Claudia
    Mueller, Mathis
    Kleebe, Hans-Joachim
    Riedel, Ralf
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2010, 93 (01) : 241 - 250
  • [50] High-temperature creep behavior of SiOC glass-ceramics: Influence of network carbon versus segregated carbon
    Ionescu, Emanuel, 1600, Blackwell Publishing Inc., Postfach 10 11 61, 69451 Weinheim, Boschstrabe 12, 69469 Weinheim, Deutschland, 69469, Germany (97):