Cu/MgO-based resistive random access memory for neuromorphic applications

被引:2
|
作者
Hu, Gao [1 ,2 ]
Yu, Zhendi [3 ]
Qu, Hao [2 ]
Yuan, Youhong [2 ]
Li, Dengfeng [4 ]
Zhu, Mingmin [3 ]
Guo, Jinming [4 ]
Xia, Chen [1 ,2 ]
Wang, Xunying [1 ,2 ]
Wang, Baoyuan [1 ,2 ]
Ma, Guokun [1 ,2 ]
Wang, Hao [1 ,2 ]
Dong, Wenjing [1 ,2 ]
机构
[1] Hubei Yangtze Memory Labs, Wuhan 430205, Hubei, Peoples R China
[2] Hubei Univ, Sch Microelect, Wuhan 430062, Hubei, Peoples R China
[3] China Jiliang Univ, Coll Informat Engn, Key Lab Electromagnet Wave Informat Technol & Metr, Hangzhou 310018, Peoples R China
[4] Hubei Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Green Preparat & Applicat Funct Mat, Wuhan 430062, Peoples R China
关键词
LAYER;
D O I
10.1063/5.0189599
中图分类号
O59 [应用物理学];
学科分类号
摘要
Resistive Random Access Memory (ReRAM) is considered to be a suitable candidate for future memories due to its low operating voltage, fast access speed, and the potential to be scaled down to nanometer range for ultra-high-density storage. In addition, its ability to retain multi-level resistance states makes it suitable for neuromorphic computing applications. In this paper, we report the resistive switching performance of Cu/MgO/Pt ReRAM. Repetitive resistive switching transitions with low switching voltages (around 1 V), 10(2) storage windows, and multi-level memory capabilities have been obtained. Biological synaptic plasticity behavior, such as long-duration potentiation/depression and paired-pulse facilitation, has been realized by the Cu/MgO/Pt ReRAM. The simulation of convolutional neural network for handwritten digit recognition is carried out to evaluate its potential application in neuromorphic systems. Finally, the conduction mechanism of the device is studied, and a resistive switching model based on Cu conducting filaments is proposed according to the dependence of I-V results on temperature and electrode size as well as the element distribution in the device. These findings indicate the potential of Cu/MgO/Pt device as high-performance nonvolatile memories and its utilization in future computer systems and neuromorphic computing.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A compute-in-memory chip based on resistive random-access memory
    Wan, Weier
    Kubendran, Rajkumar
    Schaefer, Clemens
    Eryilmaz, Sukru Burc
    Zhang, Wenqiang
    Wu, Dabin
    Deiss, Stephen
    Raina, Priyanka
    Qian, He
    Gao, Bin
    Joshi, Siddharth
    Wu, Huaqiang
    Wong, H-S Philip
    Cauwenberghs, Gert
    NATURE, 2022, 608 (7923) : 504 - +
  • [42] Investigation of Resistive Switching in Bipolar TaOx-based Resistive Random Access Memory
    Zhuo, V. Y. -Q.
    Jiang, Y.
    Sze, J. Y.
    Zhang, Z.
    Pan, J. S.
    Zhao, R.
    Shi, L. P.
    Chong, T. C.
    Robertson, J.
    2012 12TH ANNUAL NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM, 2012, : 64 - 67
  • [43] Single-crystalline CuO nanowires for resistive random access memory applications
    Hong, Yi-Siang
    Chen, Jui-Yuan
    Huang, Chun-Wei
    Chiu, Chung-Hua
    Huang, Yu-Ting
    Huang, Ting Kai
    He, Ruo Shiuan
    Wu, Wen-Wei
    APPLIED PHYSICS LETTERS, 2015, 106 (17)
  • [44] Conductance Quantization in Resistive Random Access Memory
    Yang Li
    Shibing Long
    Yang Liu
    Chen Hu
    Jiao Teng
    Qi Liu
    Hangbing Lv
    Jordi Suñé
    Ming Liu
    Nanoscale Research Letters, 2015, 10
  • [45] All Nonmetal Resistive Random Access Memory
    Yen, Te Jui
    Gismatulin, Andrei
    Volodin, Vladimir
    Gritsenko, Vladimir
    Chin, Albert
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [46] Operation methods of resistive random access memory
    GuoMing Wang
    ShiBing Long
    MeiYun Zhang
    Yang Li
    XiaoXin Xu
    HongTao Liu
    Ming Wang
    PengXiao Sun
    HaiTao Sun
    Qi Liu
    HangBing Lü
    BaoHe Yang
    Ming Liu
    Science China Technological Sciences, 2014, 57 : 2295 - 2304
  • [47] An overview of resistive random access memory devices
    LI YingTao 1
    2 Laboratory of Nano-Fabrication and Novel Device Integration
    Science Bulletin, 2011, (Z2) : 3072 - 3078
  • [48] Operation methods of resistive random access memory
    WANG Guo Ming
    LONG Shi Bing
    ZHANG Mei Yun
    LI Yang
    XU Xiao Xin
    LIU Hong Tao
    WANG Ming
    SUN Peng Xiao
    SUN Hai Tao
    LIU Qi
    L Hang Bing
    YANG Bao He
    LIU Ming
    Science China(Technological Sciences), 2014, (12) : 2295 - 2304
  • [49] Operation methods of resistive random access memory
    WANG Guo Ming
    LONG Shi Bing
    ZHANG Mei Yun
    LI Yang
    XU Xiao Xin
    LIU Hong Tao
    WANG Ming
    SUN Peng Xiao
    SUN Hai Tao
    LIU Qi
    Lü Hang Bing
    YANG Bao He
    LIU Ming
    Science China(Technological Sciences), 2014, 57 (12) : 2295 - 2304
  • [50] An overview of resistive random access memory devices
    Li YingTao
    Long ShiBing
    Liu Qi
    Lu HangBing
    Liu Su
    Liu Ming
    CHINESE SCIENCE BULLETIN, 2011, 56 (28-29): : 3072 - 3078