Sustainable design framework for enhancing shear capacity in beams using recycled steel fiber-reinforced high-strength concrete

被引:12
|
作者
Qin, Xia [1 ]
Huang, Xu [1 ]
Li, Yang [2 ]
Kaewunruen, Sakdirat [1 ]
机构
[1] Univ Birmingham, Sch Engn, Dept Civil Engn, Edgbaston B15 2TT, England
[2] Shijiazhuang Tiedao Univ, Key Lab Rd & Railway Engn Safety Control, Minist Educ, Shijiazhuang 050043, Peoples R China
关键词
Shear improvement; Recycled steel fibre; Shear deficiency; Waste management; Sustainable design framework; MECHANICAL-PROPERTIES; FIBROUS CONCRETE; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2023.134509
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
According to a recent estimate, over 1.5 billion wasted tyres which containing over 40% of vulcanised rubber and 15% of steel fibre are discarded yearly, which posing a serious threat to circular economy implementation and transition to net zero. To minimise the greenhouse gas(GHG) emission and the environmental side effect caused by burning and burying these waste tyres, recycling and reusing these materials for sustainable structural designs has become the centre of attention. This paper focuses on applying recycled bead steel fibre to improve the shear capacity of fibre-reinforced concrete beams. Moreover, the existing national standard known as Eurocode 2 and TR63 can hardly illustrate the relationship between fibre and high-strength concrete. This study is the first to investigate shear behaviours of high-strength industrial and recycled steel fibre reinforced concrete beams with consideration of different shear span ratios. Therefore, twenty real-scale beams are constructed to examine the shear capacity of high-strength industrial and recycled steel-fibre reinforced concrete beams, which aims to compare the improvement of shear strength through experiments and identify different shear strength improvements of the two categories of steel fibre. Besides, comprehensive data of 164 beams from previous studies have been collected to benchmark with the experimental results for the formula design. This study proves the feasibility of replacing industrial steel with recycled steel fibre to improve the shear capacity of fibrereintroduced concrete beams. Moreover, there are six novel equations designed developed using Eurocode 2 and TR63 as a basis in this study. Based on the findings of the paper, the proposed formulas demonstrate remarkable accuracy, with an average value of 0.982 and standard deviation of 0.213, respectively. Following an exhaustive comparison of RSF and ISF reinforced concrete beams, with a focus on economic expenditure and GHG emissions, it can be concluded that RSF offers superior economic and environmental benefits, which reduce the emissions up to 25.39% and price up to 28.04% when replacing ISF 0.8% RSF, respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Shear Strength of Composite Beams with Steel Fiber-Reinforced Concrete
    Kim, Chul-Goo
    Park, Hong-Gun
    Hong, Geon-Ho
    Kang, Su-Min
    ACI STRUCTURAL JOURNAL, 2019, 116 (06) : 5 - 16
  • [12] Rehabilitation and Strengthening of Damaged Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Laminates and High-Strength Concrete Integrating Recycled Tire Steel Fiber
    Alasmari, Hasan A.
    Sharaky, Ibrahim A.
    Elamary, Ahmed S.
    El-Zohairy, Ayman
    FIBERS, 2025, 13 (01)
  • [13] Shear Behavior of Steel Fiber Reinforced High-Strength Concrete Deep Beams
    Ma, Yudong
    Ma, Kaize
    Wei, Hui
    Liu, Boquan
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2021, 49 (04): : 20 - 27
  • [14] Shear behavior of steel fiber high-strength reinforced concrete continuous beams
    Ebeido, Tarek I.
    Allam, Said M.
    AEJ - Alexandria Engineering Journal, 2002, 41 (03): : 485 - 497
  • [15] Shear behavior of high-strength concrete beams reinforced with carbon fiber-reinforced polymer bars
    Moussa, Amr M. A.
    Said, Hemdan O. A.
    Khodary, Farag
    Hassanean, Yahia A.
    ENGINEERING STRUCTURES, 2025, 325
  • [16] SHEAR CAPACITY OF REINFORCED LIGHTWEIGHT HIGH-STRENGTH CONCRETE BEAMS
    SALANDRA, MA
    AHMAD, SH
    ACI STRUCTURAL JOURNAL, 1989, 86 (06) : 697 - 704
  • [17] SHEAR CAPACITY OF REINFORCED HIGH-STRENGTH CONCRETE BEAMS.
    Ahmad, Shuaib H.
    Khaloo, A.R.
    Poveda, A.
    1600, (83):
  • [18] Predicting the Shear Strength of High-strength Steel Fiber Reinforced Concrete Beams without Stirrups
    Wang, Ziguo
    Sun, Yuyan
    Mao, Jianfeng
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING II, PTS 1-4, 2013, 405-408 : 2938 - +
  • [19] FLEXURAL BEHAVIOR OF HIGH-STRENGTH FIBER-REINFORCED CONCRETE BEAMS
    ASHOUR, SA
    WAFA, FF
    ACI STRUCTURAL JOURNAL, 1993, 90 (03) : 279 - 287
  • [20] Influence of Fiber Content on Shear Capacity of Steel Fiber-Reinforced Concrete Beams
    Torres, Juan Andres
    Lantsoght, Eva O. L.
    FIBERS, 2019, 7 (12)