On a New Nonlinear Integro-Differential Fredholm-Chandrasekhar Equation

被引:0
|
作者
Khellaf, Ammar [1 ]
Benssaad, Meryem [2 ]
Lemita, Samir [3 ]
机构
[1] Natl Polytech Coll Constantine Algeria, Lab Math Appl & Modelisat LMAM, Preparatory Class Dept, El Khroub, Algeria
[2] Higher Normal Sch Technol Educ, Dept Math, Lab Math Appl & Modelisat LMAM, Skikda, Algeria
[3] Higher Normal Sch Technol Educ, Dept Math, Lab Math Appl & Modelisat LMAM, Ourgla, Algeria
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2023年 / 41卷
关键词
Nonlinear Fredholm integral equation; integro-differential equation; Chandrasekhar integral equation; fixed point; Nystrom method;
D O I
10.5269/bspm.63023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an analytical and numerical study of a new integro-differential Fredholm-Chandrasekhar equation of the second type. We suggest the conditions that ensure the existence and uniqueness of the nonlinear problem's solution. Then, we create a numerical technique based on the Nystrom's method. The numerical application illustrates the efficiency of the proposed process.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Existence of Solution of Nonlinear Fuzzy Fredholm Integro-differential Equations
    Mosleh, M.
    Otadi, M.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (01) : 17 - 30
  • [32] Nonlinear second order systems of Fredholm integro-differential equations
    El-Gamel M.
    Mohamed O.
    SeMA Journal, 2022, 79 (2) : 383 - 396
  • [33] Solutions of Linear and Nonlinear Fractional Fredholm Integro-Differential Equations
    Ebaid, Abdelhalim
    Al-Jeaid, Hind K.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [34] A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation
    Durmaz, Muhammet Enes
    Amirali, Ilhame
    Mohapatra, Jugal
    Amiraliyev, Gabil M.
    APPLIED NUMERICAL MATHEMATICS, 2023, 191 : 17 - 28
  • [35] Solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases
    Erfanian, Majid
    Zeidabadi, Hamed
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (04)
  • [36] Numerical Solution of a Nonlinear Integro-Differential Equation
    Busa, Jan
    Hnatic, Michal
    Honkonen, Juha
    Lucivjansky, Toma
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015), 2016, 108
  • [38] An algorithm for solving a nonlinear integro-differential equation
    Deeba, E
    Khuri, SA
    Xie, SS
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 115 (2-3) : 123 - 131
  • [39] Orthogonal collocation for a nonlinear integro-differential equation
    Ganesh, M
    Spence, A
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (02) : 191 - 206
  • [40] A new Jacobi Tau method for fuzzy fractional Fredholm nonlinear integro-differential equations
    Azizeh Bidari
    Farhad Dastmalchi Saei
    Mahdi Baghmisheh
    Tofigh Allahviranloo
    Soft Computing, 2021, 25 : 5855 - 5865