Some identities involving q-Stirling numbers of the second kind in type B

被引:1
|
作者
Ding, Ming-Jian [1 ]
Zeng, Jiang [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Univ Claude Bernard Lyon 1, ICJ UMR5208, CNRS, Cent Lyon,INSA Lyon,Univ Jean Monnet, F-69622 Villeurbanne, France
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 01期
关键词
EULER-MAHONIAN STATISTICS; PARTITIONS;
D O I
10.37236/12147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recent interest in type Bq -Stirling numbers of the second kind prompted us to give a type B analogue of a classical identity connecting the q-Stirling numbers of the second kind and Carlitz's major q-Eulerian numbers, which turns out to be a q-analogue of an identity due to Bagno, Biagioli and Garber. We provide a combinatorial proof of this identity and an algebraic proof of a more general identity for colored permutations. In addition, we prove some q-identities about the q-Stirling numbers of the second kind in types A, B and D.
引用
收藏
页数:24
相关论文
共 50 条