Some identities involving q-Stirling numbers of the second kind in type B

被引:1
|
作者
Ding, Ming-Jian [1 ]
Zeng, Jiang [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Univ Claude Bernard Lyon 1, ICJ UMR5208, CNRS, Cent Lyon,INSA Lyon,Univ Jean Monnet, F-69622 Villeurbanne, France
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 01期
关键词
EULER-MAHONIAN STATISTICS; PARTITIONS;
D O I
10.37236/12147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recent interest in type Bq -Stirling numbers of the second kind prompted us to give a type B analogue of a classical identity connecting the q-Stirling numbers of the second kind and Carlitz's major q-Eulerian numbers, which turns out to be a q-analogue of an identity due to Bagno, Biagioli and Garber. We provide a combinatorial proof of this identity and an algebraic proof of a more general identity for colored permutations. In addition, we prove some q-identities about the q-Stirling numbers of the second kind in types A, B and D.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Some Identities and Congruences for q-Stirling Numbers of the Second Kind
    Diarra, Bertin
    Maiga, Hamadoun
    Mounkoro, Tongobe
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (02) : 85 - 102
  • [2] Some identities involving second kind Stirling numbers of types B and D
    Bagno, Eli
    Biagioli, Riccardo
    Garber, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [3] q-Stirling numbers in type B
    Sagan, Bruce E.
    Swanson, Joshua P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [4] Determinants involving q-Stirling numbers
    Ehrenborg, R
    ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (04) : 630 - 642
  • [5] Some identities and congruences for Stirling numbers of the second kind
    Maiga, Hamadoun
    Tangara, Fana
    ADVANCES IN ULTRAMETRIC ANALYSIS, 2013, 596 : 149 - 162
  • [6] Q-STIRLING NUMBERS OF FIRST AND SECOND KINDS
    GOULD, HW
    DUKE MATHEMATICAL JOURNAL, 1961, 28 (02) : 281 - &
  • [7] Some identities related to degenerate Stirling numbers of the second kind
    Kim, Taekyun
    Kim, Dae San
    Kim, Hye Kyung
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 812 - 821
  • [8] On asymptotics for the signless noncentral q-Stirling numbers of the first kind
    Kyriakoussis, A.
    Vamvakari, M. G.
    STUDIES IN APPLIED MATHEMATICS, 2006, 117 (03) : 191 - 213
  • [9] q-Stirling Identities Revisited
    Cai, Yue
    Ehrenborg, Richard
    Readdy, Margaret
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [10] Some identities on λ-analogues of r-Stirling numbers of the second kind
    Kim, Dae San
    Kim, Hye Kyung
    Kim, Taekyun
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1054 - 1066