Pure Number Discrete Fractional Complex Hadamard Transform

被引:1
|
作者
Fan, Zi-Chen [1 ]
Li, Di [1 ]
Rahardja, Susanto [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Singapore Inst Technol, Singapore 138683, Singapore
关键词
Pure number discrete fractional complex Hadamard transform; self-Kronecker product; fast algorithm; multiplication reduction; FAST ALGORITHM;
D O I
10.1109/LSP.2023.3305193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter introduces a novel discrete fractional transform termed as pure number discrete fractional complex Hadamard transform (PN-FCHT). The proposed PN-FCHT offers three advantages over the traditional discrete fractional Hadamard transform (FHT). Firstly, the higher-order PN-FCHT matrix exhibits the Self-Kronecker product structure, which allows for the recursive generation from the $2\times 2$ core PN-FCHT matrix. Secondly, it possesses two important properties for computation, i.e. pure number property. Lastly, compared to existing state-of-the-art fast FHT algorithms, the PN-FCHT can reduce the transform multiplication computational complexity by up to 80% and this results in a more efficient hardware implementation.
引用
收藏
页码:1087 / 1091
页数:5
相关论文
共 50 条
  • [31] FAST COMPUTATION OF DISCRETE HARTLEY TRANSFORM VIA WALSH-HADAMARD TRANSFORM
    HSU, CY
    WU, JL
    ELECTRONICS LETTERS, 1987, 23 (09) : 466 - 468
  • [32] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [33] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [34] The hopping discrete fractional Fourier transform
    Liu, Yu
    Zhang, Feng
    Miao, Hongxia
    Tao, Ran
    SIGNAL PROCESSING, 2021, 178
  • [35] The Laplace transform in discrete fractional calculus
    Holm, Michael T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1591 - 1601
  • [36] Discrete and finite fractional Fourier transform
    Wolf, KB
    Group Theory and Numerical Analysis, 2005, 39 : 267 - 276
  • [37] Improved discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    OPTICS LETTERS, 1997, 22 (14) : 1047 - 1049
  • [38] FRACTIONAL HADAMARD TRANSFORM WITH CONTINUOUS VARIABLES IN THE CONTEXT OF QUANTUM OPTICS
    Hu, Li-Yun
    Xu, Xue-Xiang
    Ma, Shan-Jun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (04) : 1147 - 1155
  • [39] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614
  • [40] EXPERIMENTAL STUDY ON IMAGE CODING BY HAAR TRANSFORM AND COMPLEX HADAMARD TRANSFORM
    FINO, B
    ANNALES DES TELECOMMUNICATIONS, 1972, 27 (5-6): : 185 - &