Efficient removal of Cr(VI) from aqueous solution by hydrochloric acid and polypyrrole co-modified sludge-based biochar

被引:1
|
作者
Wang, Hui [1 ]
Zhong, Dengjie [1 ]
Xu, Yunlan [1 ]
Chang, Haixing [1 ]
Shen, Hongyu [1 ]
Xu, Chunzi [1 ]
Mou, Jiaxin [1 ]
Zhong, Nianbing [2 ]
Tang, Bin [2 ]
机构
[1] Chongqing Univ Technol, Sch Chem Engn, Chongqing, Peoples R China
[2] Chongqing Univ Technol, Sch Elect & Elect Engn, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Sludge-based biochar; PPy; HCl; Cr(VI); adsorption; HEXAVALENT CHROMIUM CR(VI); ADSORPTION; REDUCTION; PYROLYSIS; CAPACITY; SORPTION; CORNCOB;
D O I
10.1080/01932691.2023.2234480
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, in view of the poor adsorption capacity of sludge-based biochar, a sludge-based biochar adsorbent co-modified with hydrochloric acid and polypyrrole (PPy/SBC-HCl) was prepared and used to remove Cr(VI) from aqueous solution. Its characterization of SEM, EDS, BET, XRD, FT-IR, and XPS show that the removal mechanism of Cr(VI) by PPy/SBC-HCl includes electrostatic adsorption, ion exchange, reduction, and complexation. The removal efficiency of Cr(VI) by PPy/SBC-HCl decreases with the increase of pH. The coexisting cations Ca2+ and Mg2+ have a slight negative effect on it, while the oxoacid anions have a great negative effect on it. The adsorption of Cr(VI) by PPy/SBC-HCl is a spontaneous endothermic process, which conforms to the pseudo-second-order adsorption kinetic model and the Freundlich adsorption isotherm model. The maximum adsorption capacity is 97.37 mg g(-1) at pH 2.0 and temperature 298 K.
引用
收藏
页码:1851 / 1864
页数:14
相关论文
共 50 条
  • [31] Preparation of MnOx-Modified Biochar and Its Removal Mechanism for Cr(VI) in Aqueous Solution
    Fan, Jianxin
    Qin, Liang
    Duan, Ting
    Qi, Zenglin
    Zou, Lan
    WATER, 2022, 14 (16)
  • [32] Green synthesis of nZVI-modified biochar significantly enhanced the removal of Cr(VI) from aqueous solution
    Ma F.
    Zhao H.
    Zheng X.
    Zhang J.
    Ding W.
    Jiao Y.
    Li Q.
    Kang H.
    Environmental Science and Pollution Research, 2024, 31 (23) : 33993 - 34009
  • [33] Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid
    Huang, Guolin
    Shi, Jeffrey X.
    Langrish, Tim A. G.
    CHEMICAL ENGINEERING JOURNAL, 2009, 152 (2-3) : 434 - 439
  • [34] Removal of Cr(VI) from Aqueous Solution by Polypyrrole/Hollow Mesoporous Silica Particles
    Du, Linlin
    Gao, Peng
    Liu, Yuanli
    Minami, Tsuyoshi
    Yu, Chuanbai
    NANOMATERIALS, 2020, 10 (04)
  • [35] Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr(VI) from aqueous solution
    Xing, Xiaowei
    Ren, Xuemei
    Alharbi, Njud S.
    Chen, Changlun
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
  • [36] (Maghemite/Chitosan/Polypyrrole) nanocomposites for the efficient removal of Cr (VI) from aqueous media
    Reis, Edson da S.
    Gorza, Filipe D. S.
    Pedro, Graciela da C.
    Maciel, Bruna G.
    Silva, Romario J. da
    Ratkovski, Gabriela P.
    Melo, Celso P. de
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [37] Efficient removal of Cr(VI) from aqueous solutions by polypyrrole/natural pyrite composites
    Zhang, Fen
    Xi, Luyao
    Zhao, Meiqi
    Du, Yaguang
    Ma, Liying
    Chen, Shaohua
    Ye, Hengpeng
    Du, Dongyun
    Zhang, Tian C.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 365
  • [38] Facile preparation of polyethyleneimine modified activated sludge-based adsorbent for hexavalent chromium removal from aqueous solution
    Wang, Jiahong
    Cao, Ruihua
    He, Dengji
    Saleem, Atif
    SEPARATION SCIENCE AND TECHNOLOGY, 2021, 56 (03) : 498 - 506
  • [39] Effective removal of Cr(vi) from aqueous solution by biochar supported manganese sulfide
    Zhang, Shiqiu
    Zhang, Haiqing
    Liu, Fang
    Yang, Fan
    Zhou, Shengnan
    Zheng, Kui
    Chu, Chunli
    Liu, Le
    Ju, Meiting
    RSC ADVANCES, 2019, 9 (54) : 31333 - 31342
  • [40] Effects of fly ash modification on phosphorus adsorption of sludge-based biochar from aqueous solution
    Zuo, Yanxin
    Tian, Tian
    Tian, Shuangchao
    Wan, Liguo
    Xiao, Benyi
    Li, Lin
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2024, 26 (06) : 3893 - 3904