A systematic literature review of machine learning applications in IoT

被引:6
|
作者
Gherbi, Chirihane [1 ]
Senouci, Oussama [1 ,2 ]
Harbi, Yasmine [1 ]
Medani, Khedidja [1 ,3 ]
Aliouat, Zibouda [1 ]
机构
[1] Ferhat Abbas Univ Setif1, LRSD Lab, Setif, Algeria
[2] Mohamed El Bachir El Ibrahimi Univ, Comp Sci Dept, BBA, El Anceur, Algeria
[3] Mouhamed Lamine Debaghine Univ Setif2, Arab Literature & Language Dept, Setif, Algeria
关键词
Internet of Everything (IoE); Internet of Things (IoT); machine learning (ML); systematic literature review (SLR); INTERNET; SECURITY; CHALLENGES;
D O I
10.1002/dac.5500
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Internet of Things (IoT) is a network of interconnected smart objects having capabilities that collectively form an ecosystem and enable the delivery of smart services to users. The IoT is providing several benefits into people's lives through the environment. The various applications that are run in the IoT environment offer facilities and services. The most crucial services provided by IoT applications are quick decision for efficient management. Recently, machine learning (ML) techniques have been successfully used to maximize the potential of IoT systems. This paper presents a systematic review of the literature on the integration of ML methods in the IoT. The challenges of IoT systems are split into two categories: fundamental operation and performance. We also look at how ML is assisting in the resolution of fundamental system operation challenges such as security, big data, clustering, routing, and data aggregation.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Advancing IoT security: A systematic review of machine learning approaches for the detection of IoT botnets
    Nazir, Ahsan
    He, Jingsha
    Zhu, Nafei
    Wajahat, Ahsan
    Ma, Xiangjun
    Ullah, Faheem
    Qureshi, Sirajuddin
    Pathan, Muhammad Salman
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (10)
  • [32] Systematic reviews of machine learning in healthcare: a literature review
    Kolasa, Katarzyna
    Admassu, Bisrat
    Holownia-Voloskova, Malwina
    Kedzior, Katarzyna J.
    Poirrier, Jean-Etienne
    Perni, Stefano
    EXPERT REVIEW OF PHARMACOECONOMICS & OUTCOMES RESEARCH, 2024, 24 (01) : 63 - 115
  • [33] Cyberbullying detection and machine learning: a systematic literature review
    Balakrisnan, Vimala
    Kaity, Mohammed
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1375 - 1416
  • [34] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Khakpour, Alireza
    Colomo-Palacios, Ricardo
    TECHNOLOGY KNOWLEDGE AND LEARNING, 2021, 26 (03) : 597 - 636
  • [35] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Alireza Khakpour
    Ricardo Colomo-Palacios
    Technology, Knowledge and Learning, 2021, 26 : 597 - 636
  • [36] A Systematic Literature Review on Machine Learning in Shared Mobility
    Teusch, Julian
    Gremmel, Jan Niklas
    Koetsier, Christian
    Johora, Fatema Tuj
    Sester, Monika
    Woisetschlaeger, David M.
    Mueller, Jorg P.
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 : 870 - 899
  • [37] Data cleaning and machine learning: a systematic literature review
    Cote, Pierre-Olivier
    Nikanjam, Amin
    Ahmed, Nafisa
    Humeniuk, Dmytro
    Khomh, Foutse
    AUTOMATED SOFTWARE ENGINEERING, 2024, 31 (02)
  • [38] Adversarial Machine Learning in Industry: A Systematic Literature Review
    Jedrzejewski, Felix Viktor
    Thode, Lukas
    Fischbach, Jannik
    Gorschek, Tony
    Mendez, Daniel
    Lavesson, Niklas
    COMPUTERS & SECURITY, 2024, 145
  • [39] Operationalizing Machine Learning Models - A Systematic Literature Review
    Kolltveit, Ask Berstad
    Li, Jingyue
    2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR RESPONSIBLE ARTIFICIAL INTELLIGENCE (SE4RAI 2022), 2022, : 1 - 8
  • [40] Machine learning techniques in chemostratigraphy: A systematic literature review
    Garcia, Luciano Garim
    Ramos, Gabriel de Oliveira
    Teixeira, Jose Manuel Marques
    da Silveira, Ariane Santos
    Cardoso Jr, Marcio
    de Oliveira, Rita Gausina
    Rigo, Sandro Jose
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243