Long-Distance Person Detection Based on YOLOv7

被引:23
|
作者
Tang, Fan [1 ,2 ]
Yang, Fang [1 ,2 ]
Tian, Xianqing [1 ,2 ]
机构
[1] Hebei Univ, Sch Cyberspace Secur & Comp, Baoding 071000, Peoples R China
[2] Hebei Univ, Inst Intelligence Image & Document Informat Proc, Baoding 071000, Peoples R China
关键词
object detection; YOLOv7; recursive gated convolution; tiny object detection layer; coordinate attention mechanism;
D O I
10.3390/electronics12061502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the research field of small object detection, most object detectors have been successfully used for pedestrian detection, face recognition, lost and found, and automatic driving, among other applications, and have achieved good results. However, when general object detectors encounter challenging low-resolution images from the TinyPerson dataset, they will produce undesirable detection results because of the dense occlusion between people and different body poses. In order to solve these problems, this paper proposes a tiny object detection method TOD-YOLOv7 based on YOLOv7.First, this paper presents a reconstruction of the YOLOv7 network by adding a tiny object detection layer to enhance its detection ability. Then, we use the recursive gated convolution module to realize the interaction with the higher-order space to accelerate the model initialization process and reduce the reasoning time. Secondly, this paper proposes the integration of a coordinate attention mechanism into the YOLOv7 feature extraction network to strengthen the pedestrian object information and weaken the background information.Additionally, we leverage data augmentation techniques to improve the representation learning of the algorithm. The results show that compared with the baseline model YOLOv7, the detection accuracy of this model on the TinyPerson dataset is improved from 7.1% to 9.5%, and the detection speed reaches 208 frames per second (FPS). The algorithm of this paper is shown to achieve better detection results for tiny object detection.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [2] Automotive Parts Defect Detection Based on YOLOv7
    Huang, Hao
    Zhu, Kai
    ELECTRONICS, 2024, 13 (10)
  • [3] Underwater Target Detection Based on Improved YOLOv7
    Liu, Kaiyue
    Sun, Qi
    Sun, Daming
    Peng, Lin
    Yang, Mengduo
    Wang, Nizhuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [4] Mask wearing detection based on improved YOLOv7
    Fu Hui-chen
    Gao Jun-wei
    Che Lu-yang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (08) : 1139 - 1147
  • [5] Helmet Detection Algorithm Based on Improved YOLOv7
    Yilihamu, Yaermaimaiti
    Liu, Yajie
    Xi, Lingfei
    Wang, Ruohao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (06) : 642 - 655
  • [6] Ship Detection and Recognition Based on Improved YOLOv7
    Wu, Wei
    Li, Xiulai
    Hu, Zhuhua
    Liu, Xiaozhang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 489 - 498
  • [7] Underwater Target Detection Based on Improved YOLOv7
    Fu, Junshang
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (04) : 422 - 429
  • [8] A Flame Detection Algorithm Based on Improved YOLOv7
    Yan, Guibao
    Guo, Jialin
    Zhu, Dongyi
    Zhang, Shuming
    Xing, Rui
    Xiao, Zhangshu
    Wang, Qichao
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [9] Driver fatigue detection based on improved YOLOv7
    Li, Xianguo
    Li, Xueyan
    Shen, Zhenqian
    Qian, Guangmin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (03)
  • [10] Road Pothole Detection Based on Improved YOLOv7
    Ma, Ronggui
    Wang, Jianyu
    Huang, Xunyan
    Zhao, Lulu
    Xu, Meiyu
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 190 - 195