Intramuscular EMG classifier for detecting myopathy and neuropathy

被引:1
|
作者
Jose, Shobha [1 ]
Selvaraj, Thomas George [1 ]
Samuel, Kenneth [2 ]
Philip, Jobin T. [1 ]
Jothiraj, Sairamya Nanjappan [1 ]
Pandian, Subathra Muthu Swamy [1 ]
Handiru, Vikram Shenoy [3 ,4 ]
Suviseshamuthu, Easter S. [3 ,4 ]
机构
[1] Karunya Inst Technol & Sci, Sch Engn & Technol, Coimbatore, Tamil Nadu, India
[2] Eastern Univ, Dept Biol, St Davids, PA USA
[3] Kessler Fdn, Ctr Mobil & Rehabil Engn Res, W Orange, NJ 07052 USA
[4] Rutgers State Univ, Rutgers New Jersey Med Sch, Dept Phys Med & Rehabil, Newark, NJ USA
关键词
center symmetric local binary pattern; classification; electromyography; majority voting; neuromuscular disorders; SIGNAL CLASSIFICATION; FEATURE-EXTRACTION; DIAGNOSIS; DWT;
D O I
10.1002/ima.22811
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an automatic diagnostic system to classify intramuscular electromyography (iEMG) signals, thereby detecting neuromuscular disorders. To this end, we tailored the center symmetric local binary pattern (CSLBP) to analyze one-dimensional (1$$ 1 $$-D) signals. In this approach, the 1$$ 1 $$-D CSLBP feature extracted from a decimated iEMG signal is fed to a combination of classifiers, which in turn assigns a set of labels to the signal, and ultimately the signal category is determined by the Boyer-Moore majority voting (BMMV) algorithm. The proposed framework was investigated with a benchmark iEMG dataset that contains signals recorded from three different muscles: biceps brachii (BB), deltoideus (DE), and vastus medialis (VM). In a repeated 10$$ 10 $$-fold cross-validation, CSLBP-Combined-Classifiers-BMMV (CSLBP-CC-BMMV) achieved an average classification accuracy of 92.80$$ 92.80 $$%, 94.25$$ 94.25 $$%, and 93.71$$ 93.71 $$% for the iEMG signals recorded from BB, DE, and VM muscle, respectively. Interestingly, the performance of CSLBP-CC-BMMV surpassed the other published approaches and ensemble learning methods that are akin to our scheme in terms of classification accuracy and computational time.
引用
收藏
页码:659 / 669
页数:11
相关论文
共 50 条
  • [21] MYASTHENIA GRAVIS? MYOPATHY? OR A NEUROPATHY?
    Teng, A.
    Ohnmar
    Kalpana, P.
    Chai, Y. H.
    Umapathi, T.
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2017, 22 (03) : 394 - 394
  • [22] Critical illness myopathy and neuropathy
    Latronico, N.
    Guarneri, B.
    MINERVA ANESTESIOLOGICA, 2008, 74 (06) : 319 - 323
  • [23] MUSCULAR DYSTROPHY - MYOPATHY OR NEUROPATHY
    MCCOMAS, AJ
    SICA, REP
    LANCET, 1970, 1 (7656): : 1119 - &
  • [24] Critical illness myopathy and neuropathy
    Latronico, N
    Fenzi, F
    Recupero, D
    Guarneri, B
    Tomelleri, G
    Tonin, P
    DeMaria, G
    Antonini, L
    Rizzuto, N
    Candiani, A
    LANCET, 1996, 347 (9015): : 1579 - 1582
  • [25] Critical illness neuropathy and myopathy
    Gutmann, L
    Gutmann, L
    ARCHIVES OF NEUROLOGY, 1999, 56 (05) : 527 - 528
  • [26] Critical illness myopathy and neuropathy
    Latronico, N
    Peli, E
    Botteri, M
    CURRENT OPINION IN CRITICAL CARE, 2005, 11 (02) : 126 - 132
  • [27] MYOPATHY AND NEUROPATHY ASSOCIATED WITH OSTEOMALACIA
    SKARIA, J
    KATIYAR, BC
    SRIVASTAVA, TP
    DUBE, B
    ACTA NEUROLOGICA SCANDINAVICA, 1975, 51 (01): : 37 - 58
  • [28] An EMG-based feature extraction method using a normalized weight vertical visibility algorithm for myopathy and neuropathy detection
    Artameeyanant, Patcharin
    Sultornsanee, Sivarit
    Chamnongthai, Kosin
    SPRINGERPLUS, 2016, 5
  • [29] RELATIONS BETWEEN EMG MEASURES AND THE INTRAMUSCULAR PRESSURE
    KADEFORS, R
    HERBERTS, P
    KORNER, L
    PARKER, P
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1983, 56 (03): : S109 - S110
  • [30] Automatic decomposition of multichannel intramuscular EMG signals
    Florestal, J. R.
    Mathieu, P. A.
    McGill, K. C.
    JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 2009, 19 (01) : 1 - 9