BlanketGen - A Synthetic Blanket Occlusion Augmentation Pipeline for Motion Capture Datasets

被引:0
|
作者
Carmona, Joao [1 ,2 ]
Karacsony, Tamas [1 ,2 ,3 ]
Silva Cunha, Joao Paulo [1 ,2 ]
机构
[1] INESC TEC, Biomed Engn Res Ctr, Porto, Portugal
[2] Univ Porto, Fac Engn FEUP, Porto, Portugal
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG | 2023年
关键词
Human pose estimation; Motion capture; Synthetic occlusions; Cloth simulation; Deep learning; Dataset augmentation;
D O I
10.1109/ENBENG58165.2023.10175320
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Human motion analysis has seen drastic improvements recently, however, due to the lack of representative datasets, for clinical in-bed scenarios it is still lagging behind. To address this issue, we implemented BlanketGen, a pipeline that augments videos with synthetic blanket occlusions. With this pipeline, we generated an augmented version of the pose estimation dataset 3DPW called BlanketGen3DPW. We then used this new dataset to fine-tune a Deep Learning model to improve its performance in these scenarios with promising results. Code and further information are available at https://gitlab.inesctec.pt/brain-lab/brainlab-public/blanket-gen-releases.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 34 条
  • [21] Learning 3D joint constraints from vision-based motion capture datasets
    Murthy P.
    Butt H.T.
    Hiremath S.
    Khoshhal A.
    Stricker D.
    IPSJ Transactions on Computer Vision and Applications, 2019, 11 (01)
  • [22] Robust motion capture system against target occlusion using fast level set method
    Iwashita, Yumi
    Kurazume, Ryo
    Hasegawa, Tsutomu
    Hara, Kenji
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 168 - +
  • [23] PoseAugment: Generative Human Pose Data Augmentation with Physical Plausibility for IMU-Based Motion Capture
    Li, Zhuojun
    Yu, Chun
    Liang, Chen
    Shi, Yuanchun
    COMPUTER VISION - ECCV 2024, PT XXXII, 2025, 15090 : 55 - 73
  • [24] Motion Blur Removal for Uav-Based Wind Turbine Blade Images Using Synthetic Datasets
    Peng, Yeping
    Tang, Zhen
    Zhao, Genping
    Cao, Guangzhong
    Wu, Chao
    REMOTE SENSING, 2022, 14 (01)
  • [25] Diffusion-Based Data Augmentation for Skin Disease Classification: Impact Across Original Medical Datasets to Fully Synthetic Images
    Akrout, Mohamed
    Gyepesi, Balint
    Hollo, Peter
    Poor, Adrienn
    Kineso, Blaga
    Solis, Stephen
    Cirone, Katrina
    Kawahara, Jeremy
    Slade, Dekker
    Abid, Latif
    Kovacs, Mate
    Fazekas, Istvan
    DEEP GENERATIVE MODELS, DGM4MICCAI 2023, 2024, 14533 : 99 - 109
  • [26] High-quality, cost-effective facial motion capture pipeline with 3D Regression
    Moser, Lucio
    Williams, Mark
    Hendler, Darren
    Roble, Doug
    SIGGRAPH'18: ACM SIGGRAPH 2018 TALKS, 2018,
  • [27] A Novel Method of Human Joint Prediction in an Occlusion Scene by Using Low-Cost Motion Capture Technique
    Niu, Jianwei
    Wang, Xiai
    Wang, Dan
    Ran, Linghua
    SENSORS, 2020, 20 (04)
  • [28] Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning (vol 15, 10390, 2024)
    Cai, Zhaoxiang
    Apolinario, Sofia
    Baiao, Ana R.
    Pacini, Clare
    Sousa, Miguel D.
    Vinga, Susana
    Reddel, Roger R.
    Robinson, Phillip J.
    Garnett, Mathew J.
    Zhong, Qing
    Goncalves, Emanuel
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [29] Exploitation of motion capture data for improved synthetic micro-Doppler signature generation with adversarial learning
    Erol, Baris
    Gurbuz, Sevgi Z.
    Amin, Moeness G.
    BIG DATA II: LEARNING, ANALYTICS, AND APPLICATIONS, 2020, 11395
  • [30] A Deep Learning Segmentation Pipeline for Cardiac T1 Mapping Using MRI Relaxation-based Synthetic Contrast Augmentation
    Bhatt, Nitish
    Ramanan, Venkat
    Orbach, Ady
    Biswas, Labonny
    Ng, Matthew
    Guo, Fumin
    Qi, Xiuling
    Guo, Lancia
    Jimenez-Juan, Laura
    Roifman, Idan
    Wright, Graham A.
    Ghugre, Nilesh R.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (06)