BlanketGen - A Synthetic Blanket Occlusion Augmentation Pipeline for Motion Capture Datasets

被引:0
|
作者
Carmona, Joao [1 ,2 ]
Karacsony, Tamas [1 ,2 ,3 ]
Silva Cunha, Joao Paulo [1 ,2 ]
机构
[1] INESC TEC, Biomed Engn Res Ctr, Porto, Portugal
[2] Univ Porto, Fac Engn FEUP, Porto, Portugal
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG | 2023年
关键词
Human pose estimation; Motion capture; Synthetic occlusions; Cloth simulation; Deep learning; Dataset augmentation;
D O I
10.1109/ENBENG58165.2023.10175320
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Human motion analysis has seen drastic improvements recently, however, due to the lack of representative datasets, for clinical in-bed scenarios it is still lagging behind. To address this issue, we implemented BlanketGen, a pipeline that augments videos with synthetic blanket occlusions. With this pipeline, we generated an augmented version of the pose estimation dataset 3DPW called BlanketGen3DPW. We then used this new dataset to fine-tune a Deep Learning model to improve its performance in these scenarios with promising results. Code and further information are available at https://gitlab.inesctec.pt/brain-lab/brainlab-public/blanket-gen-releases.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 34 条
  • [1] User-Centered Pipeline for Synthetic Augmentation of Anomaly Detection Datasets
    Rosbak-Mortensen, Alexander
    Jansen, Marco
    Muhlig, Morten
    Kristensen Tot, Mikkel Bjorndahl
    Nikolov, Ivan
    COMPUTERS, 2024, 13 (03)
  • [2] Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets
    Bicer, Metin
    Phillips, Andrew T. M.
    Melis, Alessandro
    McGregor, Alison H.
    Modenese, Luca
    JOURNAL OF BIOMECHANICS, 2022, 144
  • [3] Synthetic data augmentation for biological datasets
    Silva, B.
    Pereira, F.
    Lourenco, N.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2022, 52
  • [4] NEHand: Enhancing Hand Pose Estimation in the Wild through Synthetic and Motion Capture Datasets
    Jiao, Xiuzhen
    Li, Xiangnan
    Wen, Haonan
    2024 WRC SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION, WRC SARA, 2024, : 249 - 256
  • [5] ILLUSORY OCCLUSION AND MOTION CAPTURE
    RAMACHANDRAN, VS
    INADA, V
    PERCEPTION, 1984, 13 (01) : A24 - A24
  • [6] A Data Augmentation Pipeline to Generate Synthetic Labeled Datasets of 3D Echocardiography Images Using a GAN
    Tiago, Cristiana
    Gilbert, Andrew
    Beela, Ahmed Salem
    Aase, Svein Arne
    Snare, Sten Roar
    Sprem, Jurica
    McLeod, Kristin
    IEEE ACCESS, 2022, 10 : 98803 - 98815
  • [7] Generative adversarial networks to create synthetic motion capture datasets including subject and gait characteristics
    Bicer, Metin
    Phillips, Andrew T. M.
    Melis, Alessandro
    McGregor, Alison H.
    Modenese, Luca
    JOURNAL OF BIOMECHANICS, 2024, 177
  • [8] Synthetic motion capture for interactive virtual worlds
    Yu, QX
    Terzopoulos, D
    COMPUTER ANIMATION 98 - PROCEEDINGS, 1998, : 2 - 10
  • [9] Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets
    Voo, Kenny T. R.
    Jiang, Liming
    Loy, Chen Change
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4710 - 4719
  • [10] Enhancing Image Classification in Small and Unbalanced Datasets Through Synthetic Data Augmentation
    de la Fuente, Neil
    Majo, Mireia
    Luzko, Irina
    Cordova, Henry
    Fernandez-Esparrach, Gloria
    Bernal, Jorge
    CLINICAL IMAGE-BASED PROCEDURES, CLIP 2024, 2024, 15196 : 11 - 21