Lithium sulfide: a promising prelithiation agent for high-performance lithium-ion batteries

被引:14
|
作者
Huang, Junkang [1 ]
Li, Weifeng [1 ]
Zhang, Wenli [2 ]
Lin, Bixia [1 ]
Wang, Yang [3 ]
Or, Siu Wing [4 ]
Sun, Shuhui [5 ]
Xing, Zhenyu [1 ,3 ,4 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou, Peoples R China
[2] Guangdong Univ Technol, Guangdong Prov Key Lab Plant Resources Biorefiner, Sch Chem Engn & Light Ind, Guangzhou, Peoples R China
[3] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Coll Chem, Changchun, Peoples R China
[4] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[5] Inst Natl Rech Sci INRS, Ctr Energie Mat Telecommun, Varennes, PQ, Canada
来源
SUSMAT | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Li-ion batteries; prelithiation; Li2S; prelithiation agent; metallothermic reduction reaction; CHEMICAL PRELITHIATION; CATHODE MATERIALS; SULFUR BATTERIES; ACTIVE LITHIUM; HIGH-CAPACITY; ANODE; LI2S; EFFICIENT; LITHIATION; COMPENSATE;
D O I
10.1002/sus2.177
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries are widely used in portable electronics and electric vehicles due to their high energy density, stable cycle life, and low self-discharge. However, irreversible lithium loss during the formation of the solid electrolyte interface greatly impairs energy density and cyclability. To compensate for the lithium loss, introducing an external lithium source, that is, a prelithiation agent, is an effective strategy to solve the above problems. Compared with other prelithiation strategies, cathode prelithiation is more cost-effective with simpler operation. Among various cathode prelithiation agents, we first systematically summarize the recent progress of Li2S-based prelithiation agents, and then propose some novel strategies to tackle the current challenges. This review provides a comprehensive understanding of Li2S-based prelithiation agents and new research directions in the future.
引用
收藏
页码:34 / 47
页数:14
相关论文
共 50 条
  • [41] Unraveling electrolyte solvation architectures for high-performance lithium-ion batteries
    Yang, Menghao
    Shi, Zhe
    He, Zhiyuan
    Wang, Dan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (03) : 958 - 964
  • [42] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [43] Nanograined copper foil as a high-performance collector for lithium-ion batteries
    School of Materials Science and Engineering, Department of Energy and Environmental Materials, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou
    341000, China
    J Alloys Compd, 2020,
  • [44] Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries
    Wang, Lu
    Han, Junwei
    Kong, Debin
    Tao, Ying
    Yang, Quan-Hong
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [45] Nanograined copper foil as a high-performance collector for lithium-ion batteries
    Xia, Tingting
    Liang, Tongxiang
    Xiao, Ze'en
    Chen, Jun
    Liu, Jiang
    Zhong, Shengwen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 831
  • [46] A Conductive Binder for High-Performance Sn Electrodes in Lithium-Ion Batteries
    Zhao, Yan
    Yang, Luyi
    Liu, Dong
    Hu, Jiangtao
    Han, Lei
    Wang, Zijian
    Pan, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 1672 - 1677
  • [47] Novel polyvinylimidazolium nanoparticles as high-performance binders for lithium-ion batteries
    Yuan, Jiayin
    Prescher, Simon
    Sakaushi, Ken
    Lin, Huijuan
    Antonietti, Markus
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [48] Unraveling electrolyte solvation architectures for high-performance lithium-ion batteries
    MengHao Yang
    Zhe Shi
    ZhiYuan He
    Dan Wang
    Science China Technological Sciences, 2024, 67 : 958 - 964
  • [49] High-Performance Graphite Recovered from Spent Lithium-Ion Batteries
    Ma, Xiaotu
    Chen, Mengyuan
    Chen, Bin
    Meng, Zifei
    Wang, Yan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24) : 19732 - 19738
  • [50] Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: The roles of prelithiation and working mechanism
    Li, Daqing
    Chu, Fulu
    He, Zhenjiang
    Cheng, Yi
    Wu, Feixiang
    MATERIALS TODAY, 2022, 58 : 80 - 90