Enhanced characterization of functionally significant coronary lesions using machine learning techniques with radiomics-based analysis

被引:0
|
作者
Kalykakis, G. [1 ,2 ]
Driest, F. V. [3 ]
Broersen, A. [4 ]
Terentes-Printzios, D. [5 ]
Antonopoulos, A. [5 ]
Vlachichristou, N. Anousakis [1 ]
Liga, R. [6 ]
Visvikis, D. [7 ]
Scholte, A. [8 ]
Knuuti, J. [9 ]
Neglia, D. [10 ]
Anagnostopoulos, C. D. [1 ]
机构
[1] Biomed Res Fdn Acad Athens, Athens, Greece
[2] Ionio Univ, Corfu, Greece
[3] Leiden Univ, Med Ctr, Dept Cardiol, Leiden, Netherlands
[4] Univ Med Ctr, Div Image Proc, Leiden, Netherlands
[5] Hippocrat Gen Hosp Athens, Athens, Greece
[6] Univ Pisa, Pisa, Italy
[7] Univ Bretagne Occidentale, Brest, France
[8] Leiden Univ, Med Ctr, Leiden, Netherlands
[9] Turku Univ Hosp, Turku, Finland
[10] Inst Clin Physiol, Pisa, Italy
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EPS-178
引用
收藏
页码:S273 / S274
页数:2
相关论文
共 50 条
  • [1] Radiomics-based analysis by machine learning techniques improves characterization of functionally significant coronary lesions
    Kalykakisl, G.
    Driest, F. V.
    Terentes, D.
    Broersen, A.
    Kafouris, P.
    Pitsariotis, T.
    Vlachochristou, N. Anousakis
    Antonopoulos, A.
    Benetos, G.
    Liga, R.
    Visvikis, D.
    Scholte, A.
    Knuuti, J.
    Neglia, D.
    Anagnostopoulos, C.
    EUROPEAN HEART JOURNAL, 2022, 43 : 216 - 216
  • [2] Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR
    Sun, Kun
    Jiao, Zhicheng
    Zhu, Hong
    Chai, Weimin
    Yan, Xu
    Fu, Caixia
    Cheng, Jie-Zhi
    Yan, Fuhua
    Shen, Dinggang
    JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [3] Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR
    Kun Sun
    Zhicheng Jiao
    Hong Zhu
    Weimin Chai
    Xu Yan
    Caixia Fu
    Jie-Zhi Cheng
    Fuhua Yan
    Dinggang Shen
    Journal of Translational Medicine, 19
  • [4] Segmented Glioma Classification Using Radiomics-Based Machine Learning: A Comparative Analysis of Feature Selection Techniques
    Jlassi, Amal
    Omri, Amel
    ElBedoui, Khaoula
    Barhoumi, Walid
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2023, 2024, 14546 : 425 - 447
  • [5] Radiomics-based machine learning versus histogram analysis and visual assessment to identify advanced atherosclerotic lesions on coronary computed tomography angiography
    Kolossvary, M.
    Karady, J.
    Kikuchi, Y.
    Ivanov, A.
    Schlett, C. L.
    Lu, M. T.
    Foldyna, B.
    Merkely, B.
    Aerts, H. J.
    Maurovich-Horvat, P.
    Hoffmann, U.
    EUROPEAN HEART JOURNAL, 2019, 40 : 3778 - 3778
  • [6] Integrating Radiomics with Machine Learning Algorithms for Enhanced Characterization of Renal Lesions: A Comprehensive Analysis
    Ziasaeedi, N.
    Ebrahimpour, L.
    Lemarechal, Y.
    Agharazii, M.
    Archambault, L.
    Despres, P.
    MEDICAL PHYSICS, 2024, 51 (10) : 7727 - 7727
  • [7] Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning
    Chen, Boran
    Chen, Chaoyue
    Zhang, Yang
    Huang, Zhouyang
    Wang, Haoran
    Li, Ruoyu
    Xu, Jianguo
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (01):
  • [8] Machine learning for radiomics-based multimodality and multiparametric modeling
    Wei, Lise
    Osman, Sarah
    Hatt, Mathieu
    El Naqa, Issam
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 63 (04): : 323 - 338
  • [9] A Novel Approach to Identifying Hibernating Myocardium Using Radiomics-Based Machine Learning
    Khangembam, Bangkim C.
    Jaleel, Jasim
    Roy, Arup
    Gupta, Priyanka
    Patel, Chetan
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (09)
  • [10] Editorial for "MRI Radiomics-Based Machine Learning for Predict of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions"
    Nketiah, Gabriel A.
    Bathen, Tone F.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (05) : 1474 - 1475