Editorial for "MRI Radiomics-Based Machine Learning for Predict of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions"

被引:3
|
作者
Nketiah, Gabriel A. [1 ]
Bathen, Tone F. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
关键词
DATA SYSTEM; RISK;
D O I
10.1002/jmri.27752
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:1474 / 1475
页数:2
相关论文
共 50 条
  • [1] Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions
    Hectors, Stefanie J.
    Chen, Christine
    Chen, Johnson
    Wang, Jade
    Gordon, Sharon
    Yu, Miko
    Al Hussein Al Awamlh, Bashir
    Sabuncu, Mert R.
    Margolis, Daniel J. A.
    Hu, Jim C.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (05) : 1466 - 1473
  • [2] Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone
    Zhao, Ying-Ying
    Xiong, Mei-Lian
    Liu, Yue-Feng
    Duan, Li-Juan
    Chen, Jia-Li
    Xing, Zhen
    Lin, Yan-Shun
    Chen, Tan-Hui
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [3] A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions
    Hou, Ying
    Bao, Mei-Ling
    Wu, Chen-Jiang
    Zhang, Jing
    Zhang, Yu-Dong
    Shi, Hai-Bin
    ABDOMINAL RADIOLOGY, 2020, 45 (12) : 4223 - 4234
  • [4] A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions
    Ying Hou
    Mei-Ling Bao
    Chen-Jiang Wu
    Jing Zhang
    Yu-Dong Zhang
    Hai-Bin Shi
    Abdominal Radiology, 2020, 45 : 4223 - 4234
  • [5] Biparametric MRI-based radiomics for prediction of clinically significant prostate cancer of PI-RADS category 3 lesions
    Lu, Feng
    Zhao, Yanjun
    Wang, Zhongjuan
    Feng, Ninghan
    BMC CANCER, 2025, 25 (01)
  • [6] Development and Validation of a Radiomics Nomogram for Predicting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions
    Li, Tianping
    Sun, Linna
    Li, Qinghe
    Luo, Xunrong
    Luo, Mingfang
    Xie, Haizhu
    Wang, Peiyuan
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [7] Predicting clinically significant prostate cancer in PI-RADS 3 lesions using MRI-based radiomics: a literature review of methodological variations and performance
    Serrano, Alejandro
    Louviere, Christopher
    Singh, Anmol
    Ozdemir, Savas
    Hernandez, Mauricio
    Balaji, K. C.
    Gopireddy, Dheeraj R.
    Gumus, Kazim Z.
    ABDOMINAL RADIOLOGY, 2025,
  • [8] Molecular and diffusion features for identification of clinically significant prostate cancer in PI-RADS 3 lesions
    Ajami, Tarek
    Han, Sunwoo
    Porto, Joao G.
    Kimbel, Isabella
    Szczotka, Zoe
    Guerard, Timothy
    VanderVeer-Harris, Nathan
    Ledesma, Braian R.
    Acosta, Patricia Castillo
    Kryvenko, Oleksandr N.
    Parekh, Dipen J.
    Stoyanova, Radka
    Reis, Isildinha M.
    Punnen, Sanoj
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2024, 42 (11) : 370e9 - 370e14
  • [9] MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions?
    Schoots, Ivo G.
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2018, 7 (01) : 70 - +
  • [10] MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI
    Chen, Tong
    Zhang, Zhiyuan
    Tan, Shuangxiu
    Zhang, Yueyue
    Wei, Chaogang
    Wang, Shan
    Zhao, Wenlu
    Qian, Xusheng
    Zhou, Zhiyong
    Shen, Junkang
    Dai, Yakang
    Hu, Jisu
    FRONTIERS IN ONCOLOGY, 2022, 11