A randomized measurement toolbox for an interacting Rydberg-atom quantum simulator

被引:11
|
作者
Notarnicola, Simone [1 ,2 ,3 ,4 ]
Elben, Andreas [5 ,6 ,7 ,8 ]
Lahaye, Thierry [9 ]
Browaeys, Antoine [9 ]
Montangero, Simone [1 ,3 ,4 ]
Vermersch, Benoit [7 ,8 ,10 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Padua, Padua Quantum Technol Res Ctr, I-35131 Padua, Italy
[4] Ist Nazl Fis Nucleare INFN, Sez Padova, I-35131 Padua, Italy
[5] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[6] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[7] Univ Innsbruck, Ctr Quantum Phys, A-6020 Innsbruck, Austria
[8] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[9] Univ Paris Saclay, CNRS, Inst Opt Grad Sch, Lab Charles Fabry, F-91127 Palaiseau, France
[10] Univ Grenoble Alpes, CNRS, LPMMC, Grenoble 38000, France
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 10期
关键词
random measurements; local unitaries; Rydberg atoms; STATES;
D O I
10.1088/1367-2630/acfcd3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a toolbox to probe quantum many-body states implemented on Rydberg-atoms quantum hardware via randomized measurements. We illustrate the efficacy of this measurement toolbox in the context of probing entanglement, via the estimation of the purity, and of verifying a ground-state preparation using measurements of the Hamiltonian variance. To achieve this goal, we develop and discuss in detail a protocol to realize independent, local unitary rotations. We benchmark the protocol by investigating the ground state of the one-dimensional Su-Schrieffer-Heeger model, recently realized on a chain of Rydberg atom, and the state resulting after a sudden quench in a staggered XY chain. We probe the robustness of our toolbox by taking into account experimental imperfections, such as pulse fluctuations and measurement errors.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Electric field measurement for a 320GHz wave by Rydberg-atom based sensor
    Kumagai, Motohiro
    Nagano, Shigeo
    Hayashi, Shin'ichiro
    Sekine, Norihiko
    2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [32] Photon-photon interactions in Rydberg-atom arrays
    Zhang, Lida
    Walther, Valentin
    Molmer, Klaus
    Pohl, Thomas
    QUANTUM, 2022, 6
  • [33] Rydberg-atom quantum simulation and Chern-number characterization of a topological Mott insulator
    Dauphin, A.
    Mueller, M.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [34] Optimal State Choice for Rydberg-Atom Microwave Sensors
    Chopinaud, A.
    Pritchard, J. D.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [35] Rydberg-atom formation in strongly correlated ultracold plasmas
    Bannasch, G.
    Pohl, T.
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [36] THEORY OF THE RYDBERG-ATOM ONE-PHOTON MICROMASER
    NAYAK, N
    DAS, D
    PHYSICAL REVIEW A, 1993, 48 (03): : 2475 - 2478
  • [37] THEORY OF THE RYDBERG-ATOM 2-PHOTON MICROMASER
    BRUNE, M
    RAIMOND, JM
    HAROCHE, S
    PHYSICAL REVIEW A, 1987, 35 (01): : 154 - 163
  • [38] Symmetry and symmetry breaking in Rydberg-atom intrashell dynamics
    Pilskog, I.
    Fregenal, D.
    Frette, O.
    Forre, M.
    Horsdal, E.
    Waheed, A.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [39] Interaction-Enhanced Superradiance of a Rydberg-Atom Array
    Han, Yiwen
    Li, Haowei
    Yi, Wei
    PHYSICAL REVIEW LETTERS, 2024, 133 (24)
  • [40] DARK-STATE EFFECT IN RYDBERG-ATOM STABILIZATION
    WOJCIK, A
    PARZYNSKI, R
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1995, 12 (03) : 369 - 376