A randomized measurement toolbox for an interacting Rydberg-atom quantum simulator

被引:11
|
作者
Notarnicola, Simone [1 ,2 ,3 ,4 ]
Elben, Andreas [5 ,6 ,7 ,8 ]
Lahaye, Thierry [9 ]
Browaeys, Antoine [9 ]
Montangero, Simone [1 ,3 ,4 ]
Vermersch, Benoit [7 ,8 ,10 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Padua, Padua Quantum Technol Res Ctr, I-35131 Padua, Italy
[4] Ist Nazl Fis Nucleare INFN, Sez Padova, I-35131 Padua, Italy
[5] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[6] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[7] Univ Innsbruck, Ctr Quantum Phys, A-6020 Innsbruck, Austria
[8] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[9] Univ Paris Saclay, CNRS, Inst Opt Grad Sch, Lab Charles Fabry, F-91127 Palaiseau, France
[10] Univ Grenoble Alpes, CNRS, LPMMC, Grenoble 38000, France
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 10期
关键词
random measurements; local unitaries; Rydberg atoms; STATES;
D O I
10.1088/1367-2630/acfcd3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a toolbox to probe quantum many-body states implemented on Rydberg-atoms quantum hardware via randomized measurements. We illustrate the efficacy of this measurement toolbox in the context of probing entanglement, via the estimation of the purity, and of verifying a ground-state preparation using measurements of the Hamiltonian variance. To achieve this goal, we develop and discuss in detail a protocol to realize independent, local unitary rotations. We benchmark the protocol by investigating the ground state of the one-dimensional Su-Schrieffer-Heeger model, recently realized on a chain of Rydberg atom, and the state resulting after a sudden quench in a staggered XY chain. We probe the robustness of our toolbox by taking into account experimental imperfections, such as pulse fluctuations and measurement errors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Analysis of coherent dynamics of a Rydberg-atom quantum simulator
    Tamura, Hikaru
    Yamakoshi, Tomotake
    Nakagawa, Ken'ichi
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [2] RESONANT RYDBERG-ATOM RYDBERG-ATOM COLLISIONS
    GALLAGHER, TF
    SAFINYA, KA
    GOUNAND, F
    DELPECH, JF
    SANDNER, W
    KACHRU, R
    PHYSICAL REVIEW A, 1982, 25 (04): : 1905 - 1917
  • [3] RESONANT RYDBERG-ATOM RYDBERG-ATOM COLLISIONS
    SAFINYA, KA
    DELPECH, JF
    GOUNAND, F
    SANDNER, W
    GALLAGHER, TF
    PHYSICAL REVIEW LETTERS, 1981, 47 (06) : 405 - 408
  • [4] Double-resonance spectroscopy of interacting Rydberg-atom systems
    Reinhard, A.
    Younge, K. C.
    Liebisch, T. Cubel
    Knuffman, B.
    Berman, P. R.
    Raithel, G.
    PHYSICAL REVIEW LETTERS, 2008, 100 (23)
  • [5] RADIATIVE RYDBERG-ATOM RYDBERG-ATOM COLLISIONS IN THE STRONG-FIELD REGIME
    PILLET, P
    KACHRU, R
    TRAN, NH
    SMITH, WW
    GALLAGHER, TF
    PHYSICAL REVIEW A, 1987, 36 (03): : 1132 - 1147
  • [6] Quantum superpositions of current states in Rydberg-atom networks
    Perciavalle, Francesco
    Rossini, Davide
    Polo, Juan
    Morsch, Oliver
    Amico, Luigi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [7] Electric Rydberg-Atom Interferometry
    Palmer, J. E.
    Hogan, S. D.
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [8] DETECTION OF RYDBERG-ATOM MICROMASERS
    WANG, LZ
    PHYSICAL REVIEW A, 1992, 45 (01): : R27 - R30
  • [9] Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators
    Kim, Hyosub
    Park, YeJe
    Kim, Kyungtae
    Sim, H-S
    Ahn, Jaewook
    PHYSICAL REVIEW LETTERS, 2018, 120 (18)
  • [10] Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
    Tu, Hai-Tao
    Liao, Kai-Yu
    Wang, Hong-Lei
    Zhu, Yi-Fei
    Qiu, Si-Yuan
    Jiang, Hao
    Huang, Wei
    Bian, Wu
    Yan, Hui
    Zhu, Shi-Liang
    SCIENCE ADVANCES, 2024, 10 (51):